Search for content and authors
 

Damage of gallium arsenide created after irradiation by ultra-short VUV laser pulse

Dorota Klinger 1Ryszard Sobierajski 1Jerzy Pelka 1Elżbieta Lusakowska 1Danuta Zymierska 1Wojciech Wierzchowski 2Krzysztof Wieteska 3Tomasz Balcer 2Jaroslav Chalupsky 4Wiera Hajkova 4Tomas Burian 4Anthony J. Gleeson 7Libor Juha 4Karl Tiedtke 5Sven Toleikis 5Hubertus Wabnitz 5Jerome Gaudin 6

1. Polish Academy of Sciences, Institute of Physics, al. Lotników 32/46, Warszawa 02-668, Poland
2. Institute of Electronic Materials Technology (ITME), Wólczyńska 133, Warszawa 01-919, Poland
3. Institute of Atomic Energy, Otwock-Świerk 05-400, Poland
4. Czech Academy of Sciences, Institute of Physics, Na Slovance 2, Prague 182-21, Czech Republic
5. Hamburger Synchrotronstrahlungslabor HASYLAB (HASYLAB), Notkestrasse 85, Hamburg D-22603, Germany
6. European XFEL Project Team (DESY), Notkestraße 85, Hamburg 22607, Germany
7. Daresbury Laboratory (DL), Daresbury, Warrington WA4 4AD, United Kingdom

Abstract

Various aspects of the ablation mechanism by laser pulse with different  duration times have been discussed in several review papers. Shortening the pulse duration time to femtoseconds causes obtaining the phenomena occurring in the material in ultra-short time Chemical reactions, phase transitions and surface processes occur in a very rapid timescale comparable to the natural oscillation periods of atoms [1,2].

Ultra-short pulse ablation was studied for a wide variety of materials, including semiconductors i.e. GaAs. Up to now mainly femtosecond optical lasers generating radiation from near IR range have been used for material stimulation [3-5].

Recently the VUV and XUV laser beam generated by the new type of source are becoming interesting for materials modifications. Preliminary experimental results confirmed the assumption that the absorption depth for most materials can be much bigger, than when using femtosecond optical pulses [6-8]. Damage processes induced by laser pulses lead to the formation of specific morphological structures of sizes in micrometer and nanometer scales [9,10].

There is still lack of knowledge about the basic physical mechanisms of nano- and microstructures formation, including the impact of the wavelength of generated radiation and of laser fluence. Detailed studies of surface structures morphology and structural changes would provide a clear physical picture of the ablation processes in materials irradiated by femtosecond pulses from VUV range.

In the current work we present the laser ablation investigations of GaAs. The experiments were conducted with the laser femtosecond pulse at the wavelength 32 nm. Effects of the ablation process on the structure and the composition of the samples in the micron scale is studied using a number of analytical techniques.

 

[1]. Sundaram S.K., Mazur E., Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses., nature materials 1(2002) 217-224.

[2] Jiang L., Tsai H.L., Energy transport and material removal in wide bandgap materials by a femtosecond laser pulse, Int. J. Heat and Mass Transfer 48(2005) 487-499.

[3] Borowiec A., Mackenzie M., Weatherly G.C., Haugen H.K., Femtosecond laser pulse ablation of GaAs ans InP: studies utilizing scanning and transmission electron microscopy, Appl. Phys. A 77 (2003) 411-417.

[4] Amit Pratap Singh, Avinashi Kapoor, K.N.Tripathi, Ripples and grain formation in GaAs surfaces exposed to ultrashort laser pulses, Optics&Laser Technol. 34 (2002) 533-540.

[5] Cavallieri A. Sokolowski-Tinten K., Bialkowski J., von der Linde D., Femtosecond laser ablation of gallium arsenide investigated with time-of-flight mass spectroscopy, Appl. Phys. Lett. 72 (1998) 2385-2387.

[6]Hau-Riege, S.P.,  London, R.A., Bionta, et al., Damage threshold of inorganic solids under free-electron-laser irradiation at 32.5 nm wavelength. Appl. Phys. Lett. 90 (2007) 173128.

[7] Krzywinski, J., Sobierajski, R., Jurek, M. et al, Conductors, semiconductors, and insulators irradiated with short-wavelength free-electron laser. J. Appl. Phys. 101 (2007) 043107.

[8] Stojanovic, N., von der Linde, D., Sokolowski-Tinten, K., Zastrau, U., Perner, F., Förster, E., Sobierajski, R., Nietubyc, R., Jurek, M., Klinger, D., Pelka, J., Krzywinski, J., Juha, L., Cihelka, J., Velyhan, A., Koptyaev, S., Hajkova, V., Chalupsky, J., Kuba, J., Tschentscher, T., Toleikis, S., Düsterer, S., Redlin, H., Ablation of solids using a femtosecond extreme ultraviolet free electron laser. Appl. Phys. Lett. 89 (2006) 241909.

[9] Pelka J., Sobierajski R., Klinger D. et al., Damage In solids irradiated by a single shot of XUV free-electron laser: Irreversible changes investigated using X-ray microdiffraction, atomic force microscopy and Nomarski optical microscopy, Rad. Phys Chem.  78 (2009) S46-S52.

[10] R. Sobierajski, D. Klinger, M. Jurek, J. B. Pelka, L. Juha, J. Chalupský, J. Cihelka, V. Hajkova, L. Vysin, U. Jastrow, N. Stojanovic, S. Toleikis, H. Wabnitz, J. Krzywinski, S. Hau-Reige, R. London, “Interaction of intense ultrashort XUV pulses with silicon”, Proc. SPIE, Vol. 7361 (2009) 736107.

 

Legal notice
  • Legal notice:
 

Related papers

Presentation: Poster at IX Krajowe Sympozjum Użytkowników Promieniowania Synchrotronowego, by Dorota Klinger
See On-line Journal of IX Krajowe Sympozjum Użytkowników Promieniowania Synchrotronowego

Submitted: 2011-06-15 16:54
Revised:   2011-06-28 10:43