Preparation of free-standing GaN substrates from thick GaN layers crystallized by Hydride Vapor Phase Epitaxy on ammonothermally grown GaN seeds

Tomasz Sochacki 1,2Zachary Bryan 4Mikołaj Amilusik 1,2Ramon Collazo 4Bolesław Łucznik 1,2Jan L. Weyher 1Grzegorz Nowak 1Bogdan Sadovyi 1Grzegorz Kamler Robert Kucharski 3Marcin Zając 3Roman Doradziński 3Robert Dwilinski 3Izabella Grzegory 1Michal Bockowski 1,2Zlatko Sitar 4

1. Institute of High Pressure Physics, Warsaw 01-142, Poland
2. TopGaN Sp. z o. o., Sokolowska 29/37, Warsaw 01-142, Poland
3. AMMONO S.A., Czerwonego Krzyza 2/31, Warszawa 00-377, Poland
4. North Carolina State University, MSE (NCSU), 1001 Capability Dr., Raleigh, NC 27695, United States


The best quality crystals of gallium nitride can be grown from the solution in supercritical ammonia [1]. This approach, which is known as ammonothermal method, is analogous to hydrothermal crystallization of quartz, however, ammonia is used in the place of water. The ammonothermal GaN crystals (Am-GaN) have many great attributes. They are extremely flat, with bowing radii of (0001) crystallographic planes reaching up to 100 m. Dislocations density is of the order of 104 cm-2 and free carrier concentration (for n-type crystals) can be varied from 5x1017 cm-3 to 5x1019 cm-3. One of the biggest drawbacks of the ammonothermal growth of GaN is that it is very slow: growth at best 0.1 mm per day. A technique that has a relatively high growth rate, even up to 500 µm per hour, is a Hydride Vapor Phase Epitaxy (HVPE). This is the most common approach for manufacturing GaN substrates today. The HVPE involves crystallization from the vapor phase at ambient pressure, with GaN deposited on a foreign substrate through the reaction of ammonia with gallium chloride at temperatures of about 1300 K. Etching or self-lift-off techniques are used to separate the nitride film from the foreign substrate (typically sapphire or GaAs) and yield a large-diameter, free-standing (F-S) GaN substrates. Unfortunately, the F-S HVPE-GaN crystals often suffer from lattice bowing. This follows from significant differences between the lattice constants and thermal expansion coefficients of the foreign substrate and the nitride film. It seems, therefore, that a synergy of the HVPE method (the highest growth rate) and the ammonothermal crystallization (the highest structural quality) can create new opportunities for an efficient production of the GaN bulk crystals (then substrates). This can also be helpful to answer a few general questions. First of all, is it possible to combine the HVPE and ammonothermal methods and crystallize perfect HVPE-GaN on a perfect ammonothermal GaN seed? Second of all, is a nature andstructural quality of the seed a main barrier for crystallization of the bulk HVPE-GaN? Finally, if it is possible to multiply the Am-GaN crystal by the HVPE method, obtaining a new F-S HVPE-GaN by slicing it from the seed. Some answers for these questions are being given in this paper. Thus, the results of the HVPE-GaN crystallization on the ammonothermal GaN crystals are described. The starting conditions for the HVPE growth on the Am-GaN seeds are determined, presented and discussed. Smooth GaN layers of excellent crystalline quality, from 0.6 mm to 1.1 mm thick, without cracks, and with dislocation density of the order of 5x104 cm-2 are shown. The result of slicing of a new HVPE grown material is demonstrated. Structural, optical and electrical properties of this new sliced F-S HVPE-GaN are examined and presented.

1.     R. Doradziński et al., in Technology of Gallium Nitride Crystal Growth, edited by D. Ehrentraut et al., (Springer-Verlag, Heidelberg, ISBN 978-3-642-04828-9), 137-158, (2010)


Legal notice
  • Legal notice:

    Copyright (c) Pielaszek Research, all rights reserved.
    The above materials, including auxiliary resources, are subject to Publisher's copyright and the Author(s) intellectual rights. Without limiting Author(s) rights under respective Copyright Transfer Agreement, no part of the above documents may be reproduced without the express written permission of Pielaszek Research, the Publisher. Express permission from the Author(s) is required to use the above materials for academic purposes, such as lectures or scientific presentations.
    In every case, proper references including Author(s) name(s) and URL of this webpage: must be provided.


Related papers
  1. Homoepitaxial HVPE-GaN growth on non-polar and semi-polar seeds
  2. Semipolar and nonpolar AlGaN growth mechanisms under N-rich conditions in PAMBE
  3. Growth of AlN crystals and AlGaN epitaxy on AlN wafers
  4. Ammonothermal growth of GaN substrates
  5. Homoepitaxial HVPE-GaN growth on non-polar and semi-polar seeds
  6. Preparation of free-standing GaN substrates from thick GaN layers crystallized by Hydride Vapor Phase Epitaxy on ammonothermally grown GaN seeds
  7. Semipolar (2021) UV LEDs and LDs grown by PAMBE
  8. Role and influence of impurities on GaN crystal grown from liquid solution under high nitrogen pressure in multi-feed-seed configuration
  9. Podłoża AMMONO-GaN przyszłością elektroniki półprzewodnikowej
  10. Microscopy and spectroscopy techniques in characterization of thick GaN and Ga1-xMnxN layers grown by Sublimation Sandwich Method
  11. Carrier recombination under one-photon and two-photon excitation in GaN epilayers
  12. Flat lattice of truly bulk ammonothermal GaN
  13. Mass flow and reaction analysis of the growth of GaN layers by HVPE
  14. Diffusion and diffusion induced defects in GaN
  15. Magnetotransport studies of Ga(Mn,Fe)N bulk crystals

Presentation: Poster at 15th Summer School on Crystal Growth - ISSCG-15, by Tomasz Sochacki
See On-line Journal of 15th Summer School on Crystal Growth - ISSCG-15

Submitted: 2013-05-31 23:22
Revised:   2013-06-01 23:24