Search for content and authors
 

One-step reduction and functionalization of graphene oxide sheets using biomimetic dopamine derivatives

Izabela Kamińska 1,2Manash Das 3Joanna Niedziolka-Jonsson 1Patrice Woisel 4Joel Lyskawa 4Marcin Opallo 1Rabah Boukherroub 2Sabine Szunerits 2

1. Polish Academy of Sciences, Institute of Physical Chemistry, Kasprzaka 44/52, Warszawa 01-224, Poland
2. Institut de Recherche interdisciplinaire (IRI), 50 avenue de Halley, BP 70478, Villeneuve d'Ascq 59652, France
3. North East Institute of Science and Technology (NEIST), Assam 785006, India
4. Unite des Materiaux Et Transformations, Equipe Ingenierie des Systemes Polymeres (UMET-ISP), Villeneuve d'Ascq 59658, France

Abstract

      Graphene has attracted a great deal of scientific and technological attention in recent years due to its unique electronic, mechanical and thermal properties 1-3. A great promise has been shown for applications in different areas such as electronics, energy storage and conversion as well as in the development of biosensors 4-7.

    Here, we demonstrate that graphene oxide can be reduced to graphene by adding azide-terminated dopamine. The reduced character of graphene was investigated using cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS). Next, “click” reaction has been performed using graphene modified with azide-terminated dopamine and alkyne-terminated ferrocene. The interaction between dopamine and graphene is based on π-stacking interactions between the hexagonal cells of graphene and the aromatic ring structure of dopamine 8. The success of the “click” reaction was confirmed  by XPS and CV as well as FTIR.

Fig. 1:Schematic illustration of the preparation of azido-dopamine capped grahene nanosheets.

References

1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004).

2. M. J. Allen, V. C. Tung, and R. B. Kaner, Chem. Rev., 110, 132 (2009).

3. Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, Electroanalysis, 22, 1027 (2010).

4. L. X. Li, G. Y. Zhang, X. D. Bai, X. M. Sun, X. R. Wang, E. Wang, and H. J. Dai, Science, 319, 1229 (2008).

5. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Nat. Mater., 6, 652 (2007).

6 . H.-X. Wang, K.-G. Zhou, Y.-L. Xie, J. Zeng, N.-N. Chai, J. Li, and H.-L. Zhang, Chem. Commun., 47, 5747 (2011).

7. S.-Y. Yang, K.-H. Chang, H.-W. Tien, Y.-F. Lee, S.-M. Li, Y.-S. Wang, J.-Y. Wang, C.-C. M. Ma, and C.-C. Hu, J. Mater. Chem., 21, 2374 (2011).

8. L. Q. Xu, W. J. Yang, K.-G. Neoh, E.-T. Kang, and G. D. Fu, Macromolecules, 43, 8336 (2010).

 

 

Legal notice
  • Legal notice:
 

Related papers

Presentation: Short communication at SMCBS'2011 International Workshop, by Izabela Kamińska
See On-line Journal of SMCBS'2011 International Workshop

Submitted: 2011-08-15 15:17
Revised:   2011-08-28 18:44