Biosensing Applications Of Engineered Pyranose 2-oxidases Wired With Osmium Polymers

Sevinc Tuncagil 1,2,3Oliver Spadiut 4Julia Anzengruber 4Muhammad N. Zafar 3Federico Tasca 3Suna Timur 2Levent Toppare 1Dietmar Haltrich 4Lo Gorton 3

1. Middle East Technical University, Department of Chemistry, Ankara 06531, Turkey
2. Ege University, Biochemistry Department, İzmir 35100, Turkey
3. Lund University, Department of Analytical Chemistry and Biochemistry, Lund 22100, Sweden
4. University of Natural Resources and Applied Life Sci Department of Food Sciences and Technology, Vienna A-1190, Austria


Pyranose 2-oxidase (PyOx) from Trametes multicolor, a homotetrameric flavoprotein, catalyzes the oxidation of different aldopyranoses at the C2 to their corresponding 2-ketoaldoses, producing H2O2 as a by-product. To make the enzyme communicate with electrodes for applications in enzymatic biofuel cells and biosensors, redox-active polymeric compounds, called mediators, can be used to accomplish mediated electron transfer (MET). Applications of flexible osmium redox polymers have always been promising for such use in enzymatic biofuel cells and biosensors because they allow the formation of a hydrogel and the formal potential can be varied to suit the application and work as an efficient mediator. In this work, rational and semi-rational protein design, based on the crystal structure and on former studies, was used to improve the enzyme’s characteristics for use in biofuel cells. In homogeneous steady-state characterization, the resulting mutants (T169G/H450G/E542K/V546C, S113E/T169G/H450G/Q461R/V546C and S113E/T169G/ H450G/Q461R/E542K/V546C) showed a significant increase in activity when D-galactose was used as electron donor and either 1,4-benzoquinone or ferricenium ion was used as electron acceptor. The catalytic efficiency increased up to 30-fold. For biosensing applications, these PyOx variants, which showed improved properties for D-galactose as a substrate, were wired with different osmium polymers with formal potentials ranging between -0.140 to 0.270 V. The wild type and the three PyOx mutants and the PyOx were characterized by their pH profile, substrate specificity, and enzyme loading experiments. The kinetic parameters of the biosensing system, maximum reaction rate of the enzyme (Vmax) and Michaelis Menten constant (Km), analytical characterizations for different sugars were also determined.

Legal notice
  • Legal notice:

    Copyright (c) Pielaszek Research, all rights reserved.
    The above materials, including auxiliary resources, are subject to Publisher's copyright and the Author(s) intellectual rights. Without limiting Author(s) rights under respective Copyright Transfer Agreement, no part of the above documents may be reproduced without the express written permission of Pielaszek Research, the Publisher. Express permission from the Author(s) is required to use the above materials for academic purposes, such as lectures or scientific presentations.
    In every case, proper references including Author(s) name(s) and URL of this webpage: must be provided.


Related papers
  1. Effect of deglycosylation of cellobiose dehydrogenase applied to 3rd generation biosensors and biofuel cells
  2. Deglycosylation of glucose oxidase by PNGase F
  3. Influence of metal cations on the turnover rate of cellobiose dehydrogenase
  4. Electron transfer studies with different sugar oxidizing enzymes and osmium polymers to improve the current density
  5. Gold nanoparticle-modified enzyme-based sugar and oxygen sensitive electrodes for biosensing and biofuel cell applications
  6. Electrochemical communication between viable bacterial cells and flexible redox polymers
  7. Direct electrochemistry of cellobiose dehydrogenase for applications in the third-generation biosensor and biofuel cell
  8. Electrochemical Communication between Viable Bacterial Cells and Flexible Redox Polymers
  9. Anode and cathode reactions for biofuel cells based on direct electron transfer reactions between biological components and electrodes
  10. Increasing Biosensor Sensitivity by Length Fractionated Single Walled Carbon Nanotubes
  11. Electrical Wiring of Living Bacillus subtilis Cells Using Flexible Osmium-Redox Polymers
  12. Some electrochemical properties of laccase immobilised on the Au, IrOx, or C60-Pd polymer electrode supports
  13. Oxygen electroreduction by fungal laccases - combination of electrochemical and spectral data
  14. Wiring of whole living bacteria with osmium-redox polymers
  15. The electrochemistry of a his-tagged microperoxidase assembled onto gold electrodes
  16. Electron Transfer in Complex Two-cofactor-containing Enzymes at Alkanethiol-modified Gold Electrodes

Presentation: Poster at SMCBS'2009 International Workshop, by Sevinc Tuncagil
See On-line Journal of SMCBS'2009 International Workshop

Submitted: 2009-08-31 22:23
Revised:   2009-11-07 14:29
© 1998-2021 pielaszek research, all rights reserved Powered by the Conference Engine