Search for content and authors
 

The non-gaussian continuous-time random walk analisys of the option dynamics

Tomasz M. Ciepliński 1Ryszard Kutner 2

1. Uniwersytet Warszawski, Wydział Fizyki, Instytut Fizyki Doswiadczalnej, Zakład Dydaktyki Fizyki, Smyczkowa 5/7, Warszawa 02-678, Poland
2. Warsaw University, Faculty of Physics, Hoża 69, Warszawa 00-681, Poland

Abstract

We discuss a novel formula for probability density function describing log-returns dynamics on financial markets and corresponding novel pricing formula for European call option derived in [1]. Both formulas were derived within the Continuous-Time Random Walk formalism. We compared predictions of formulas with several data sets obtained from stock markets of small , middle and large sizes observing a good agreement. Our project is to describe obtained results within a microscopic dynamics defined, for example, by the threshold model of Sieczka and Hołyst [2].

[1] A. Jurlewicz, A. Wołamańska, and P. Żebrowski, Acta Phys. Pol. A 114 (2008) 629.

[2] P. Sieczka and J. A. Hołyst, Acta Phys. Pol. A 114 (2008) 525.

 

Auxiliary resources (full texts, presentations, posters, etc.)
  1. POSTER: The non-gaussian continuous-time random walk analisys of the option dynamics, PDF document, version 1.4, 0.4MB
 

Legal notice
  • Legal notice:
 

Related papers

Presentation: Poster at 5 Ogólnopolskie Sympozjum "Fizyka w Ekonomii i Naukach Społecznych", by Tomasz M. Ciepliński
See On-line Journal of 5 Ogólnopolskie Sympozjum "Fizyka w Ekonomii i Naukach Społecznych"

Submitted: 2010-10-07 23:26
Revised:   2010-10-07 23:26