Search for content and authors
 

Molecular Machines in Biology

Robert Huber 

Max-Planck-Institut fuer Biochemie, Am Klopferspitz 18a, Martinsried D-82152, Germany

Abstract

Within cells or subcellular compartments misfolded and/or short-lived regulatory proteins are degraded by protease machines, cage-forming multi-subunit assemblages. Their proteolytic active sites are sequestered within the particles and located on the inner walls. Access of protein substrates is regulated by protein subcomplexes or protein domains which may assist in substrate unfolding dependent of ATP. Five protease machines will be described displaying different subunit structures, oligomeric states, enzymatic mechanisms, and regulatory properties.

Proteasome

[1] M. Groll, L. Ditzel, J. Löwe, D. Stock, M. Bochtler, H. D. Bartunik, R. Huber, Nature 1997, 386, 463-471: Structure of 20S proteasome from yeast at 2.4 Å resolution.

[2] M. Groll, W. Heinemeyer, S. Jäger, T. Ullrich, M. Bochtler, D. H. Wolf, R. Huber, Proc. Natl. Acad. Sci. USA 1999, 96, 10976-10983: The catalytic sites of 20S proteasomes and their role in subunit maturation: A mutational and crystallographic study.

[3] M. Groll, M. Bajorek, A. Köhler, L. Moroder, D. M. Rubin, R. Huber, M. H. Glickman, D. Finley, Nature Struct. Biol. 2000, 7, 1062-1067: A gated channel into the proteasome core particle.

HslV/HslU

[1] M. Bochtler, C. Hartmann, H. K. Song, G. Bourenkov, H. Bartunik, R. Huber, Nature 2000, 403, 800-805: The structure of HslU and the ATP-dependent protease HslU-HslV.

[2] H. K. Song, C. Hartmann, R. Ramachandran, M. Bochtler, R. Behrendt, L. Moroder, R. Huber, Proc. Natl. Acad. Sci. USA 2000, 97, 14103-14108: Mutational studies on HslU and its docking mode with HslV.

[3] R. Ramachandran, C. Hartmann, H. J. Song, R. Huber, M. Bochtler, Proc. Natl. Acad. Sci. USA 2002, 99, 7396-7401: Functional interactions of HslV(ClpQ) with the ATPase HslU(ClpY).

Tricorn

[1] H. Brandstetter, J. S. Kim, M. Groll, R. Huber, Nature 2001, 414, 466-470: Crystal structure of the tricorn protease reveals a protein disassembly line.

[2] J. S. Kim, M. Groll, H. J. Musiol, R. Behrendt, M. Kaiser, L. Moroder, R. Huber, H. Brandstetter, J. Mol. Biol. 2002, 324, 1041-1050: Navigation inside a protease: substrate selection and product exit in the tricorn protease from Thermoplasma acidophilum.

[3] P. Goettig, M. Groll, J. S. Kim, R. Huber, H. Brandstetter: EMBO J. 2002, 21, 5343-5352: Structures of the tricorn interacting aminopeptidase F1 with different ligands explain its catalytic mechanism.

Dipeptidyl peptidase IV

[1] M. Engel, T. Hoffmann, L. Wagner, M. Wermann, U. Heiser, R. Kiefersauer, R. Huber, W. Bode, H. U. Demuth, H. Brandstetter, Proc. Natl. Acad. Sci. USA 2003, 100, 5063-5068: The crystal structure of dipeptidyl peptidase IV (CD26) reveals its functional regulation and enzymatic mechanism.

DegP(HtrA)

[1] T. Krojer, M. Garrido-Franco, R. Huber, M. Ehrmann, T. Clausen, Nature 2002, 416, 455-459: Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine.

 

Legal notice
  • Legal notice:
 

Presentation: plenary lecture at 18th Conference on Physical Organic Chemistry, Plenary session, by Robert Huber
See On-line Journal of 18th Conference on Physical Organic Chemistry

Submitted: 2006-06-08 14:34
Revised:   2006-07-31 07:58