Search for content and authors
 

  Diffusion equation and Wigner’s surmise

Ryszard Wojnar 

Polish Academy of Science, Institute of Fundamental Technological Research (IPPT-PAN), Adolfa Pawińskiego 5B, Warszawa 02-106, Poland

Abstract

Non-Gaussian distributions occur in systems that do not follow the prescriptions of standard statistics. Prominent example of non-Gaussian statistics is Wigner’s surmise distribution giving a remarkably good description of the level repulsion observed in neutron scattering. Wigner’s distribution appears in computation of the large zeros of Riemann's zeta function on the critical line,  which according to the Montgomery-Odlyzko law have the same statistical properties as the distribution of eigenvalue spacings in a Gaussian unitary ensemble. Wigner's distribution is also found in social sciences, e.g. the bus system in Cuernavaca, Mexico, is subject to this distribution.

Most non equilibrium systems do not have analytical solutions for the distribution and correlation functions. In this contribution the evolution of Wigner’s statistics is studied and a diffusion type equation with source term is proposed for this aim. The solution of this equation is the Wigner distribution of the type f(x,t) = a(t) x exp[-b(t) x^2], where a = a(t) and b = b(t) are functions of time t only, and x is the space variable.

1. Eugene P. Wigner, On the statistical distribution of the widths and spacings of nuclear resonance levels, Mathematical Proceedings of the Cambridge Philosophical Society Vol. 47, Iss. 04, 790-798 (1951).

2. H.L. Montgomery, The pair correlation of zeros of the Riemann zeta-function on the critical line, Proc. Symp. Pure Math. Providence 24, 181-193 (1973).

3. A.M. Odlyzko, The 10^{20}th zero of the Riemann zeta-function and 70 million of its neighbors, in ’Dynamical, spectral, and arithmetic zeta functions’ (San Antonio, TX, 1999), 139–144, Contemp. Math. 290, Amer. Math. Soc., Providence 2001.

4. N.M. Katz, P. Sarnak, Zeros of the zeta function and symmetry, Bulletin of The AMS Vol. 36, Number 1, January 1999, Pages 1-26.

5. Jinho Baik, Alexei Borodin, Percy Deift, Toufic Suidan, A model for the bus system in Cuernavaca (Mexico), Journal of Physics A: Mathematical and General, Vol. 39, Iss. 28, pp. 8965-8975 (2006).

6. Milan Krbálek and Petr Šeba, Spectral rigidity of vehicular streams (random matrix theory approach), J. Phys. A: Math. Theor. 42 (2009) 345001 (10pp).

 

Legal notice
  • Legal notice:
 

Related papers

Presentation: Poster at 6 Ogólnopolskie Sympozjum "Fizyka w Ekonomii i Naukach Społecznych", by Ryszard Wojnar
See On-line Journal of 6 Ogólnopolskie Sympozjum "Fizyka w Ekonomii i Naukach Społecznych"

Submitted: 2012-01-19 20:52
Revised:   2012-01-31 11:59