Search for content and authors |
Potential of nano-sized Rare Earth fluorides in optical applications |
Ulrich H. Kynast 1, Marina M. Lezhnina 1,2 |
1. University of Applied Sciences Muenster, FB1, Applied Materials Sciences (FHMS), Stegerwaldstrasse 39, Steinfurt 48565, Germany |
Abstract |
Rare Earth fluorides are a class of materials with high potential in optical applications. On one hand, fluoride lattices allow high coordination numbers for the hosted Rare Earth ions, on the other hand, the high ionicity of the Rare Earth to fluorine bond leads to a wide band gap and very low vibrational energies. These two essential factors in particular contribute to their usability in optical applications based on vacuum ultraviolet (VUV) and near infrared (NIR) excitation. Keywords in this context are 'downconverters' (multiphotonemitters, e.g. YF3:Pr, LiGdF4:Eu [1]) and 'upconverters' (e.g. YF3:Yb,Er [2]) as well as NIR-emitters (e.g. LaF3:Nd [3]). Recent attempts to control the size of such particles down to the nano-scale, at the same time maintaining the performance of their macroscopic counterparts, indicate accessibility of hitherto unrealized optical properties and applications. The preparation and optical characteristics of such nanoparticles and their embedding in polymeric, glassy or porous matrices to enable the manufacture of transparent hybrid materials will be discussed.
|
Legal notice |
|
Related papers |
Presentation: invited oral at E-MRS Fall Meeting 2004, Symposium G, by Ulrich H. KynastSee On-line Journal of E-MRS Fall Meeting 2004 Submitted: 2004-05-20 11:15 Revised: 2009-06-08 12:55 |