

West Pomeranian University of Technology in Szczecin

POLYESTER ELECTRO CONDUCTIVE FIBERS WITH CARBON NANOTUBES AND GRAPHENE SHEETS

PhD Sandra Paszkiewicz, prof. Z. Rosłaniec

Institute of Materials Science and Engineering

OUTLINE

- Introduction
 - Carbon nanostructures (1D, 2D) as promising nanofillers for multifunctional polymer nanocomposites
- Materials used in the study
- Preparation of masterbatches and fibers
- Electrical conductivity and microscopy analysis of prepared fibers
- Conclusions

Carbon nanostructures

graphene

carbon nanotubes (CNTs)

Properties and Advantages

The exceptional properties of graphene/ nano graphene platelets (GNPs) include the following:

Conductivity	 A very high thermal conductivity of up to 5300 W/(mK) High electron mobility at room temperature (theoretical limit 200 000 cm²V⁻¹s¹); resistivity less than the resistivity of silver GNPs have excellent in-plane electrical conductivity of up to 20 000 S/cm 		
Strength	They have a very high Young's modulus 1 TPa, intrinsic strength of 130 GPa		
Surface area	GNPs have a specific surface area of up to 2 674 m²/g, which is twice the surface area of CNTs		
Density	 It is very light, with a 1-square-meter sheet weighing only 0.77 milligrams NGPs have a low density of about 2.2 g/cm³ 		
Dimensions	Single layer graphene is very thin with a thickness of just 0.34 nm GNPs are available in a broad rage of platelet lengths of 1 to 50 µm and thickness range of approximately 0.34 nm to 100 nm		
Optical	Graphene's unique optical properties – transmittance 97.7 %		
Barrier	Complete impermeability to any gases		

Nanocomposite performance

- Improvement of mechanical properties
- Improvement of electrical conductivity
- Nucleation effects
- Reduction of permeability of gases and vapours (when graphene added)
- Improved solvent resistance
- Improved surface properties (e.g. printability, smoothness)
- Reduced shrinkage
- Improved flame retardancy

Carbon nanofillers used in our study

- single-walled CNTs (KNT, Grafen Chemical Industries Co. Ankara)

purity: > 95 wt %

diameter: < 2.0 nm

length: $5 - 30 \mu m$

electrical conductivity: > 100 S/cm

specyfic surface area: > 380 m2/g

 I_G/I_D (Raman): > 20

- expanded graphite prepared by thermal expansion (Slovak Academy of Sciences)

average thickness of the expanded agglomerates : 450-560 nm average particle size of ranged from 16 μm to 50 μm (99%)

XPS analysis:

C1s 99.21 %

O1s 0.79 %

MASTERBATCH

In situ polymerization

15 1

PET/1.0wt % of SWCNT PET/1.0 wt % of EG

Melt blending under high pressure

PET/5.0wt % of SWCNT PET/5.0 wt % of EG

Preparation of PET/SWCNT(EG) nanocomposites

II step- Polycondensation

Polycondensation of bis(2-hydroxylethyl) terephthalate to poly(ethylene terephthalate)

Samples prepared via in situ polymerization

Samples prepared via melt blending

SAMPLE	ELECTRICAL CONDUCTIVITY S/cm
PET	10 ⁻¹²
PET/0.1 SWCNT	10 ⁻⁶
PET/0.1 EG	10 ⁻⁵

SAMPLE	ELECTRICAL CONDUCTIVITY S/cm
PET	10 ⁻¹²
PET/0.5 SWCNT	10 ⁻¹⁰
PET/0.5 EG	10 ⁻⁹

CONCLUSIONS

- Two types of masterbatches were prepared in the Institute of Materials Science and Engineering WUT in Szczecin: via in situ polymerization and via melt blending under high pressure
- Masterbatches based on PET and prepared by in situ polymerization contained 1 wt.% of EG and 1 wt % of SWCNT. On the other hand masterbatches prepared by melt blending contained 5 wt.% of EG and 5 wt % of SWCNT
- Conducting fibers were prepared in Torlen Sp. z o.o. in Torun from the masterbatches. From the spinning points were collected PET fibers containing: 0.1 wt % of nanofillers (in situ) and 0.5 wt % (melt blending), respectively. Detailed description of the process is contained in the operating records of the company.
- Higher electrical conductivity was obtained for PET/EG fibers from masterbatches obtained by in situ polymerization.
- ✓ Values of electrical conductivity of SWCNT/EG PET fibers were very close to values obtained for neat PET fibers.
- SEM and TEM analysis of PET fibers obtained from masterbtaches prepared by *in situ* polymerization confirmed achievement of a good dispersion state of SWCNTs and highly exfoliated NGPs within PET matrix at low loading (0.1 wt%) of carbon nanofiller

Sponsored by:

National Science Centre project Preludium 2013/11/N/ST8/00404 entitled: "Characterization of the interphase interaction of polymer nanocomposites containing carbon nanostructures".

Acknolegment

- Krzysztof Kowalski President– Team Leader– Torlen
- Leopold Czoków Chief Process Engineer Torlen
- Lucyna Kaczor Production Intendent– Torlen
- Piotr Kaczmarek

 Technician staff

 ZUT
- Tiberio A. Ezquerra CSIC, Madrid
- Amelia Linares CSIC, Madrid
- Zdenko Špitalský, Polymer Institute, SAS
- Jaroslav Mosnáček, Polymer Institute, SAS

TORLEN SPÓŁKA z o. o. ul. M. Skłodowskiej-Curie 73; 87-100 Toruń tel. +48 056 656-1292 fax +48 056 656-2556

e-mail: biuro@torlen.torun.pl

Thank you for your attention

