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Abstract 

In theory of economics most models describing economic growth use differential equations. The Solow's and Haavelmo's models should be mentioned.

However, in the moment of trial of their use by econometricians many questions arise. First, economic data are presented in discrete form what forces using of difference equations. Second, transition from continuous form to the discrete in order to estimate its parameters is still discussive. It has been observed for some times that standard (classical) discretization methods of differential equations often produce difference equations that do not share their dynamics (for example produce chaotic behavior).

The essence of mentioned problems and proposal of their solution will be presented on the example of the Goodwin's Growth Cycle model.
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Introduction

Systems of ordinary differential equations (ODEs) appear in various applications. Few ODEs can be solved explicitly. We often have to visualize the solutions by using discretization methods and computer programming. After applying a discretization (or numerical) method to system of ODEs, it produces a system of difference equations, or discrete time system. 

It has been observed for some time that the standard (classical) discretization methods of differential equations often produce difference equations that do not share their dynamics. An illustrative example is the logistic difference equations:
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Euler’s discretization scheme produces the logistic difference equation
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which possesses a remarkably different dynamics such as period – doubling bifurcation route to chaos [1].

This simple example shows, how use of the Euler method changes dynamic behavior of the model. Because in the economics the problem of discretization of continuous models exists often, particularly in economic data, it s crucial to look for such discretization method that preserve dynamic properties of the model. Studies show that the most fruitful discretization methods are those of Mickens [1] and Kahan [2]. Many researchers are applying these techniques to obtain numerical solutions to the various differentia equations that arise in interesting problem in natural (mainly biology) and engineering sciences [3], [4], [5], [6]. 

The article is aimed at application of one of above-mentioned methods (Kahan's method) for economic model described by means of differential equations. Because used model is a Lotka-Volterra model, for which in its simplest form (coefficients are equal 1) some analyses were performed [5], [6], [7], in this article the analysis will refer to its general form (any coefficients) more useful for economic application.
The Goodwin’s Growth Cycle Model 

Goodwin’s [8], [9] Growth Cycle model (GM) represents a milestone in non-linear economic dynamics, receiving for this reason many extensions and improvements [10], [11], [12], [13].

Goodwin - who is one of the first advocates of the need for non-linear analysis in economics - gives an interesting application of the Lotka-Volterra predator prey model for growth cycles, with wages as the predator and profits the prey.

The economic system described in the GM is a one-sector non-monetary economy: there are only two social classes, capitalists and workers, which produce a homogeneous commodity, which may be consumed or invested and whose price may be normalized and put equal to 1. 

Assume two homogeneous, non-specific factors of production, labour, 
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, where all quantities are real and net, and all wages are consumed with all profits being reinvested into the system. There is a steady growth rate 
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) rises in the neighborhood of full employment. The workers accrue to themselves a portion of the output of the economy 
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 and the capitalists receive 
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 for their efforts. 
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Letting


[image: image22.wmf]a

g

+

=

1

a

, 


[image: image23.wmf]r

=

1

b

,


[image: image24.wmf](

)

b

a

+

-

=

k

a

1

2

,


[image: image25.wmf]k

b

1

2

=


we obtain the Lotka – Voltera equations:
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The system has two fixed points: the trivial one (0,0) at the origin (a saddle point), and:
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is the only positive equilibrium that indicates both “predator” and “prey” coexist. In order to be economically meaningful, fixed point (3) has to satisfy the conditions: 
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. The dynamical proprieties of LV model are well known: since the eigenvalues of the Jacobian matrix of the system are purely imaginary 
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, its mean that, the fixed point (3) is a centre (nonhyperbolic), neutrally stable, and the flow of the system around the point will be described by a family of closed orbits whose “amplitude” depends on initial conditions. Then, the initial values of 
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 and 
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 will determine which of the infinitely closed orbits describes the actual dynamic behaviour of the system.

The Euler’s Method

There are numerous discretization scheme in Numerical Analysis literature. The simplest numerical scheme is the forward Euler  in witch 
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 is the step size of numerical method. Making this replacement in Equation (2), and letting 
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Dynamic properties of the model and conditions of its convergence were described by Roger [6]. In this paper also the following Theorem 1 was proven. Its properties will be used in simulation part.

Theorem 1. Let 
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 be a fixed point of the system of differential equations (2). Then after we apply the Euler’s method, the stability of 
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(i) unstable, if 
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(ii) stable, if 
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(iii) unstable, if 
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Moreover, if 
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 is stable, we can always preserve the stability of 
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 small enough such that all of eigenvalues of Jacobian matrix 
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The Kahan’s method

As the alternative to the Euler method, this article proposes Kahan's method. For the model (2),  Kahan considered the numerical scheme
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where 
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Dynamic properties of the model and conditions of its convergence were described by Roger [6]. In this paper also the following theorem 2 and Theorem 3 was proven. 

Theorem 2. Let 
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Theorem 3. Let 
[image: image71.wmf]0

p

 be a fixed point of differential equations (2) and h is small enough such that 
[image: image72.wmf](

)

h

p

Df

/

2

0

<

. Then the Hopf bifurcations occurs at 
[image: image73.wmf]0

p

 of the differential equations (2),  it will also occur at 
[image: image74.wmf]0

p

 of the difference equation (5).

Numerical example

Let the model (2) use the following values:
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in consequence we obtain for the model (7) two fixed points, trivial point (0,0), and fixed point 
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The Jakobian matrix at the point (0,0) is a diagonal matrix with eigenvalues 
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The applying the Euler method to the system (7), we get the following system of difference equations:
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Jacobian matrix for model (8) has in (0,0) eigenvalues 
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Figure 1. Applying the Euler’s method to system (7), we see what although we choose 
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Source: own calculation.

Applying Kahan’s metod, the system of differential equation (2), accordance with (6), it is as foolows:
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According to theorem 2 and 3 we want to find h, for which all characteristic roots (eigenvalues) satisfy inequality 
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with complex eigenvalues 
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Because 
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 both characteristic roots satisfy condition inequality in Theorem 2, and they fit in the unit disk. Figure 2 illustrates above calculations. 
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Figure 2. Phase – portrait in the 
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Conclusions (summary)

In this paper for the Goodwin growth model (of the predator – prey type) two discretization methods were used: Euler's and Kahan's. It was shown that even at small step h, stable fixed point 
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 for initial system of differential equations is unstable for the system of difference equations created as a result of the Euler method. Therefore the Euler's method results in system with different dynamics as in the system of difference equations.

The second discretization method – Kahan’s method preserves dynamic properties of the system. 
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