AlGaN/GaN microwave HEMT transistors on monocrystalline GaN substrates (Pol-HEMT)

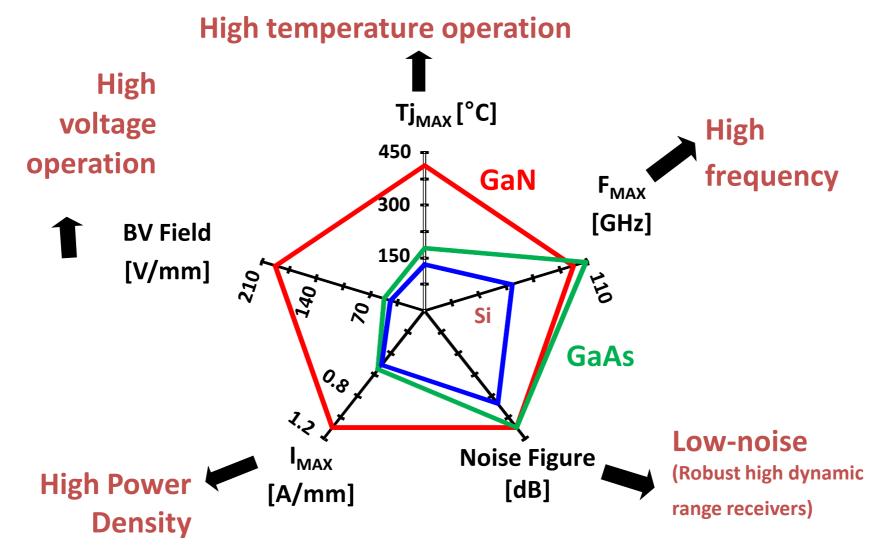
PBS1/A3/9/2012

Anna Piotrowska

Institute of Electron Technology

Department of Micro- and Nanotechnology of Wide Bandgap Semiconductors

Plan of Presentation



- 1. Motivation
- 2. Goal and scope
- 3. Project progress

Motivation

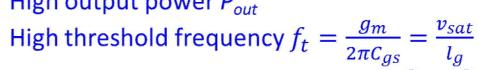
Motivation

GaN

Wide E_a

High E_B

High v_{sat}


Heterojunction

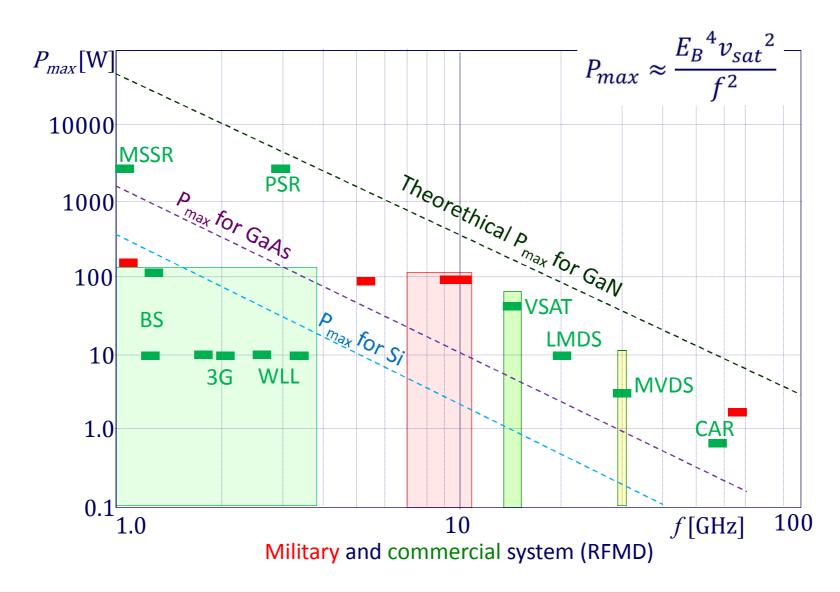
 I_D

High *n*

High μ_n

High output power Pout

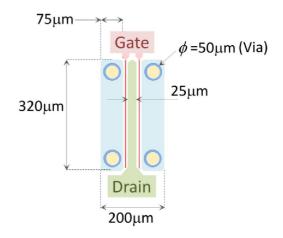
High power added efficiency PAE = $\frac{P_{out} - P_{in}}{P}$

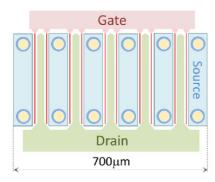

High operation temperature T_{max}

- Low cooling demand
- Compact size
- Possibility of large scale integration

Motivation

Aim and scope of work

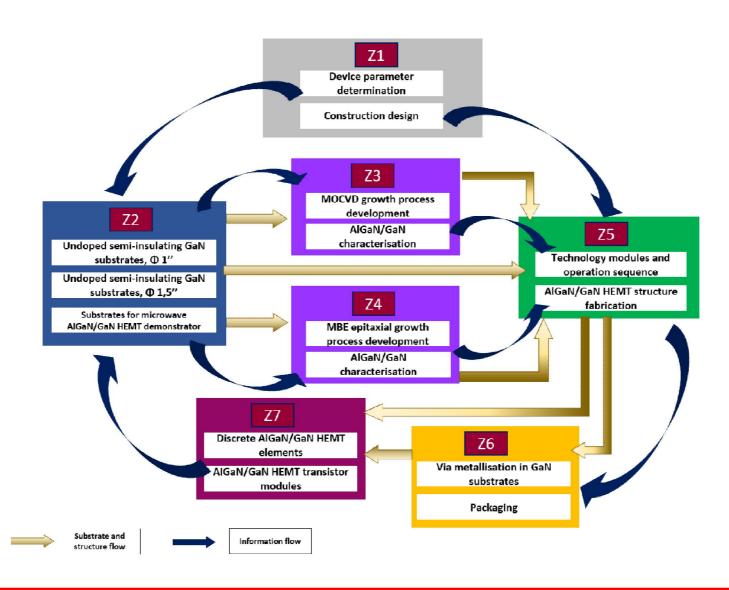



Microwave S-band AlGaN/GaN HEMTs on 1.5" bulk GaN substrates

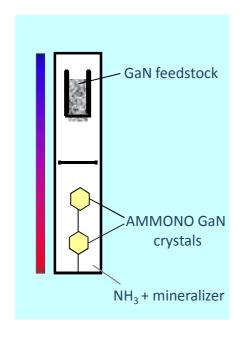
Target single HEMT cell/module parameters

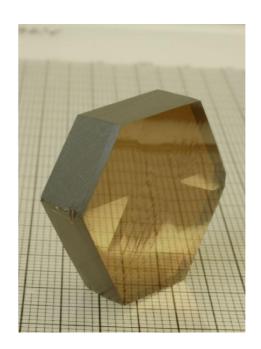
	Cell	Module			
Gate length l _g	0.3÷0.6μm	-			
Saturation current I _{Dsat} (V _{DS} =5V, V _{GS} =0V)	0.5A	2.5A			
I _{Dsat} /w _g	~0.8A/mm	-			
Breakdown voltage V _{DSBR}	> 70V	> 70V			
V _{GS} range	-8÷0V	-			
Threshold voltage V _P	~-3V	-			
Input capacitance C _{GS}	≤ 0.8pF	≤5pF			
Output capacitance C _{DS}	≤ 0.18pF	≤1pF			
Band	up to 6GHz	up to 4GHz			
Output power P _{1dB} , U _{DS} =28V, I _{DQ} =100mA	-	12W			
Small signal gain G _{ss}	15dB	14dB			
Maximum gate current I _{Gmax}	0.7mA	≤ 4mA			
Thermal resistance (flange – channel) R _{thj-c}	-	5.5°C/W			
Maximum junction temperature T _j	200 °C	200 °C			

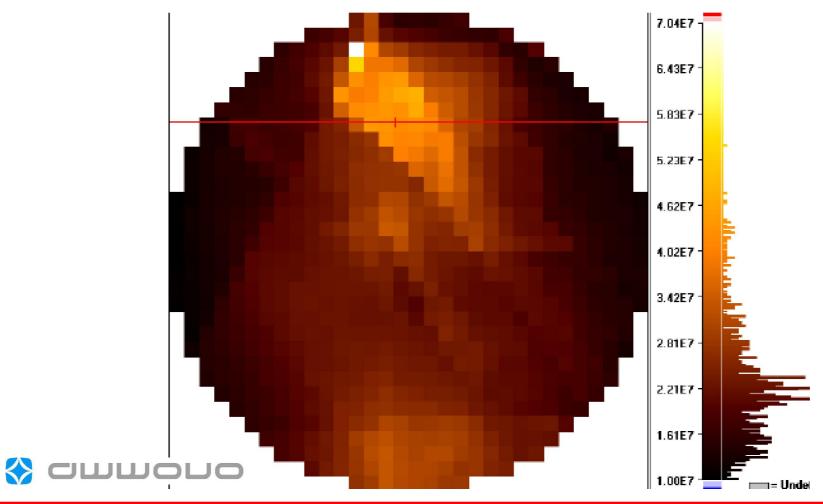
Topology of single HEMT cell and module



Work breakdown

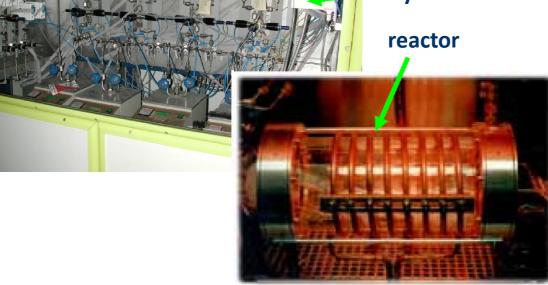






undoped SI 1-inch GaN substrates

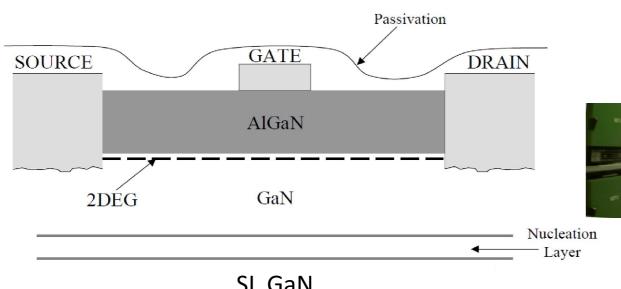
Highly resistive-GaN with reduced oxygen concentration (1.5 - inch) – resistivity mapping capacitive technique, time domain



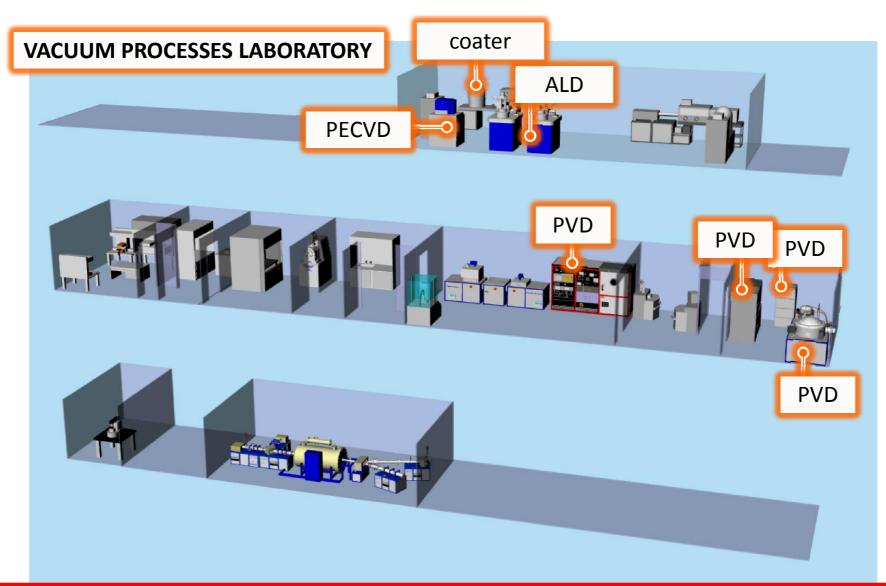
MOVPE

Characterisation: CV, Hall, CL, AFM, XRD, SEM, TEM

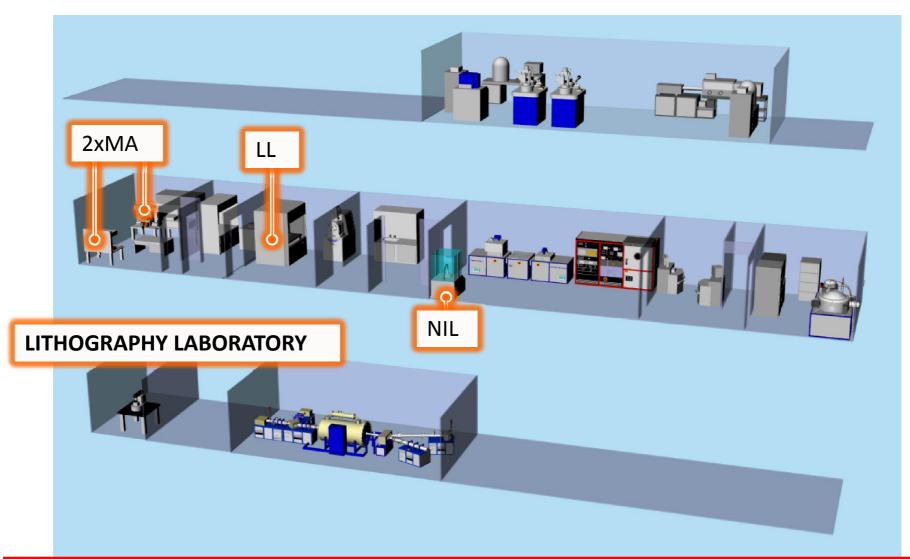
DIVISION OF PHYSICS AND TECHNOLOGY OF WIDE-BAND-GAP SEMICONDUCTOR NANOSTRUCTURES GROUP OF MBE GROWTH OF NITRIDE NANOSTRUCTURES

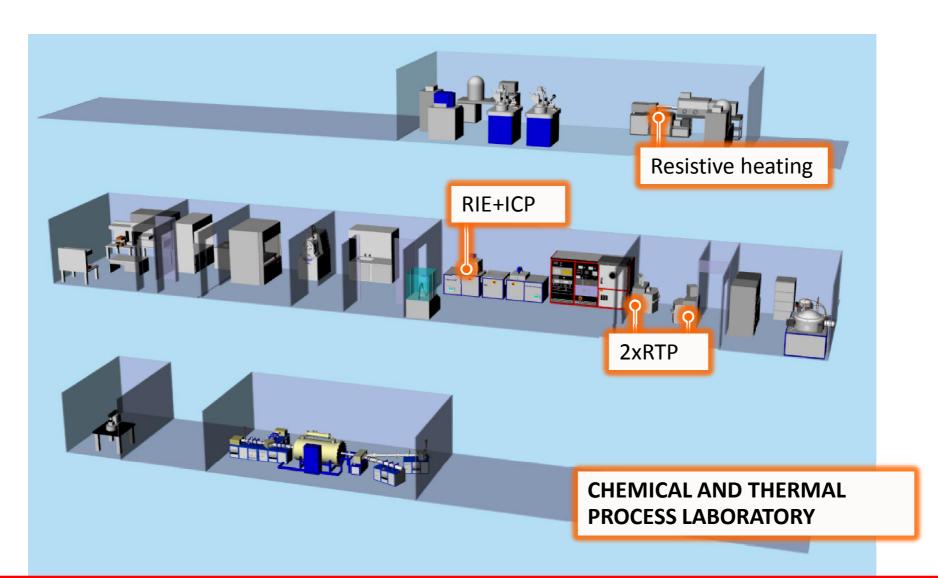

MBE GaN Riber Compact 21

Department of Micro- and Nanotechnology of Wide Bandgap Semiconductors

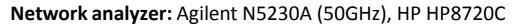


SI GaN





Packaging Laboratory Department of Microelectronics in Kraków



INSTYTUT RADIOELEKTRONIKI POLITECHNIKA WARSZAWSKA

Microvawe Laboratory

Microwave and Radiolocation Engineering Division

(26,5 GHz), Rhode-Schwarz ZVRE (4 GHz)

Spectrum analyzer: Agilent E4407B, Anristu MS710C **Power meters:** Rhode-Schwarz NRVS, Agilent E4418B

Digital oscilloscopes: Tektronix TDS2022, Agilent

DSO7054A

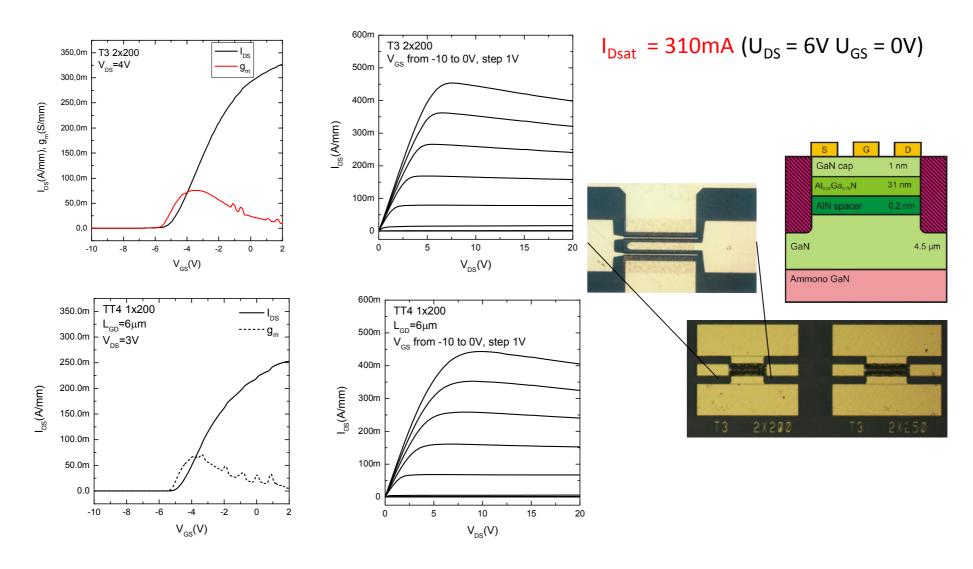
"On-wafer" measurement system: Cascade Microtech

M150

Thermovision camera: Fluke Ti-25

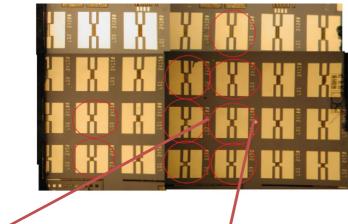
Thermal chamber: Binder Thermal response analyzer

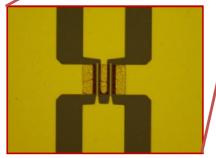
Software: QuickWave 3D wave simulator, Agilent ADS


circuit simulator

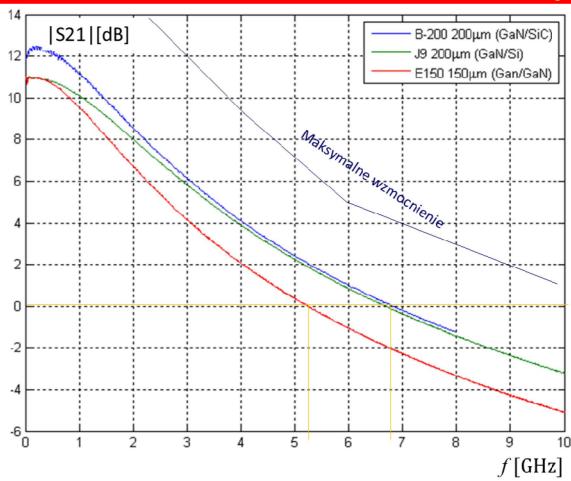
"on wafer" [S] matrix measurement system

HEMTs on highly resistive GaN substrates





HEMTs on highly resistive GaN substrates


Structure layout:

Double-gate transistor *lg*=1µm;

Saturation current:

 $I_{DSAT}(U_{GS}=0V, U_{DS}=6V)$ up to 140mA as a function of w_a ;

Operation point voltage: U_{DS}=6V÷30V;

Sample $|S_{21}|$ characteristics of GaN HEMT transistors (I_g = 150 and 200 μ m) fabricated at ITE on various substrates

|S₂₁| - Forward transmission coefficient (gain)

ITE GaN HEMTs maximum gain

Conclusions & future plans

Progress according to the workplan

	1 1061 cos according to the wor		_	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12						
		Lider:	Partnerzy:												П						
71	Specyfikacja parametrów materiałów i struktur oraz tranzystorów HEMT Z1.1.Specyfikacja parametrów półizolujących podłoży GaN, struktur epitaksjalnych i przyrządowych HEMT AlGaN/GaN Z1.2. Modelowanie i projekt konstrukcji tranzystora mikrofalowego HEMT na bazie GaN	PW IRE	ITE, AMMONO, TopGaN, IWC PAN, IF PAN																		
2	Monokrystaliczne podłoża GaN	ANAMONO ITE, TopGaN, IW			1 1	1	1 1	+	1 1	1	1 1	1									
	Z2.1. Opracowanie technologii wytwarzania niskodomieszkowanych pólizolujących podłoży GaN o średnicy 1 st Z2.2. Opracowanie technologii wytwarzania niskodomieszkowanych pólizolujących podłoży GaN		ANAMONO	AMMONO	AMMONO	ITE, TopGaN, IWC	MMONO		MONO				*	7							
	o średnicy 1,5"									🛪											
	Z2.3. Wyprodukowanie i przekazanie do partnerów 30 sztuk podłoży GaN 1,5".											$\Gamma \Box$									
3	Wzrost epitaksjalny struktur AlGaN/GaN technika MOCVD																				
	Z3.1. Opracowanie procesów wzrostu epitaksjalnego MOVPE struktur tranzystorowych AlGaN/GaN na podłożu z monokrystalicznego GaN	Top-GaN	ITE, AMMONO, IWC PAN, IF PAN																		
	Z3.2. Charakteryzacja elektryczna i strukturalna struktur tranzystorowych AlGaN/GaN na						5	٦			7	7									
4	Wzrost epitaksjalny struktur AlGaN/GaN technika MBE																				
	24.1. Opracowanie procesów wzrostu epitaksjalnego MBE struktur tranzystorowych AlGaN/GaN na podłożu z monokrystalicznego GaN	IE DAN	IF PAN ITE, AMMONO TOPGAN, IWC PA	IF PAN	IF PAN	IF PAN	IF PAN	ITE, AMMONO,													
	24.2. Charakteryzacja elektryczna i strukturalna struktur tranzystorowych AlGaN/GaN na podłożach GaN.			ropusii, ilicirali				7	\			7	\ \								
5	Technologia procesów obróbki struktur HEMT AlGaN/GaN	ITE IWC PAN, IF PAN																			
	Z5.1. Opracowanie technologii izolacji struktur HEIMT		ITE DAG DAN JE																		
	Z5.2. Opracowanie technologii wytwarzania kontaktów źródła i drenu			IM/C DANI JE DAN																	
	Z5.3. Opracowanie technologii wytwarzania kontaktu bramki		IVVEFAIN, IT FAIN																		
	Z5.4. Opracowanie pasywacji powierzchni struktur HEMT		1												I., I						
	Z 5.5. Opracowanie sekwencji operacji tranzystora HEMT GaN.												-	<u> </u>							
6	Montaž struktur HEMT AIGaN/GaN	ITE									f										
	6.1. Opracowanie procesów wytwarzania metalizowanych via holes w podłożach GaN		TE IRE PW								-	<u>ا</u> ح									
	6.2. Montaż mikrofalowych struktur HEMT i dostarczenie elementów do 27								\top		ľ										
7	Charakterystyka struktur i podzespołów wytworzonych w Z5 i Z6											\top		\top							
	Z7.1. Charakteryzacja elementów dyskretnych HEMT AlGaN/GaN	PW IRE	PW IRE	ITE																	
	Z7.2. Charakteryzacja modułów tranzystorowych HEMT AlGaN/GaN		I						\top	1 1											

