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Abstract
Complex systems in nature fluctuate - exhibit
very rich spatio– temporal structure.
We study the dynamical properties of real com-
plex systems such as e.g. economy and/or
financial market by looking at their spectral
properties eg. density of eigenvalues under
umbrella of Free Random Variables Calculus
- back-of-an -envelope calculation of compli-
cated problems in Random Matrix Theory.

Classical Methodology
General idea: In the absence of information on
the phenomenon - take large number of possi-
ble explanatory variables and large number of
output variables, look for correlations between
pairs hoping to find some signal.
Problem:Standard tools for identifying hidden
spatio–temporal structures like

• Factor Component Analysis

• Principal Component Analysis

are rapidly marred by measurement noise,
quantified by r = N/T and caught into dimen-
sionality curse trap. This usually leads to bi-
ased estimates and spurious correlations.
Solution: Random Matrix Theory - with
reacher structures can be difficult to get the re-
sult

• Can we have a more user-friendly version
of RMT, to easily incorporate dynamical
parameter ?

Models considered
we will assume, that cross–correlations of N
variables can be described by the two–point co-
variance (correlation) function,

Cia,jb ≡ 〈XiaXjb〉 . (1)

For Xia ≡ xia − 〈xia〉, which describe the fluc-
tuations (with zero mean) of the returns around
the trend, and collect them into a rectangular
N × T matrix X. The average 〈. . .〉 is under-
stood as taken according to some probability
distribution whose functional shape is stable
over time, but whose parameters may be time–
dependent. With cross–covariances and auto–
covariances factorized, non–random, and de-
coupled the temporal dependence of the distri-
bution of variable is the same, and the structure
of cross–correlations does not evolve in time

Cia,jb = CijAab (2)

we will consider these distinct cases:

• C = A = I

• C 6= I A = I

• C 6= A 6= I

• Cross–correlations

Free Random Variables
A generalization of probability theory to noncommutative random variables, such as infinite (Her-
mitian) random matrices H. It relies on the concept of freeness, which is noncommutative indepen-
dence.

Classical Probability Noncommutative probability (FRV)

x - random variable, p(x) H - random matrix, P (H)
pdf spectral density ̺(λ)dλ

characteristic function gx(z) ≡
〈

eizx
〉

Green’s function GH(z) = 1

N

〈

Tr 1

z·1−H

〉

or M - transform M(z) = zGH(z)− 1
independence freeness

Addition of independent r.v.: Addition of f.r.v.
The logarithm of the characteristic function, The Blue’s function

rx(z) ≡ log gx(z), is additive, GH(BH(z)) = BH(GH(z)) = z, is additive,
rx1+x2

(z) = rx1
(z) + rx2

(z) BH1+H2
(z) = BH1

(z) +BH2
(z)− 1

z

Multiplication of independent r.v.: Multiplication of free r.v.:
Reduced to the addition problem The N - transform,
via the exponential map, owing to MH(NH(z)) = NH(MH(z)) = z,

ex1ex2 = ex1+x2 is multiplicative
NH1H2

(z) = z
1+z

NH1
(z)NH2

(z)

Equal – time correlations
• data: 100 time series of returns observed during 990 consecutive days

• correlation structure is related to the non–synchronous character of financial transactions

• the evolution of ”true” eigenvalues is governed by non–stationary random variables
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eigenvalues 

a) C = A = 1 b) C 6= 1 A = 1 c) Randomized

VARMA(1, 1)
We introduce weak spatio–temporal correlation
structure by VARMA(q1, q2) model

Yia −

q1∑

β=1

bβYi,a−β =

q2∑

α=0

aαǫi,a−α. (3)

for q1 = q2 = 1, using the FRV multiplication for-
mula

z = rMNA(rM)NC(M), (4)

we end up with 6−th order polynomial equation for
M ≡ Mc(z)

r
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M

6 + . . . = 0 (5)
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Results for Wishart
  
Chi^2/DoF = 0.00298
R^2 =  0.90678
  

2.20174 ±0.16702
0.10671 ±0.06092

r 0.51852 ±0.07015

Results for VARMA(1,1) model
  
Chi^2/DoF = 0.00298
R^2 =  0.90678
a0 1.01034 ±0.36949
a1        -0.22006 ±0.19862
b1 0.62501 ±0.22171

 empirical data
 Wishart Fit
 VARMA fit
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Empirical spectrum for macroeconomic data is sim-

ilar to the one from financial markets, with largest

eigenvalues separated. Simple VARMA(1, 1) tem-

poral structure fits well the data.

Cross-Correlations
We are interested in the correlations between
two matrices of nonequal size. We remove in-
ternal correlations inside X and Y and consider
the SVD of a matrix M ×N

G = Ŷ X̂T (6)

of Ŷ - M = 15 sectorial CPI’s and X̂ - M = 37
different macroeconomic indicators like GDP,
interest rates,unemployement rate etc.
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Heat map for reduced G
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Inflation is described by relatively few common
factors, like eg. foreign exchange reserves or
the confidence level indicator.
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