Applying Free Random Variables to the Analysis of Temporal Correlations in Real Complex Systems
 Małgorzata Snarska, Jagiellonian University - Institute of Physics,Cracow University of Economics-Chair of Econometrics and Operations Research

Abstract

Complex systems in nature fluctuate - exhibit very rich spatio- temporal structure.
We study the dynamical properties of real complex systems such as e.g. economy and/or financial market by looking at their spectral properties eg. density of eigenvalues under umbrella of Free Random Variables Calculus - back-of-an -envelope calculation of complicated problems in Random Matrix Theory.

Classical Methodology

General idea: In the absence of information on the phenomenon - take large number of possible explanatory variables and large number of output variables, look for correlations between pairs hoping to find some signal.
Problem:Standard tools for identifying hidden spatio-temporal structures like

- Factor Component Analysis
- Principal Component Analysis
are rapidly marred by measurement noise, quantified by $r=N / T$ and caught into dimensionality curse trap. This usually leads to biased estimates and spurious correlations.
Solution: Random Matrix Theory - with reacher structures can be difficult to get the result
- Can we have a more user-friendly version of RMT, to easily incorporate dynamical parameter ?

Models considered

we will assume, that cross-correlations of N variables can be described by the two-point covariance (correlation) function,

$$
\begin{equation*}
\mathcal{C}_{i a, j b} \equiv\left\langle X_{i a} X_{j b}\right\rangle . \tag{1}
\end{equation*}
$$

For $X_{i a} \equiv x_{i a}-\left\langle x_{i a}\right\rangle$, which describe the fluctuations (with zero mean) of the returns around the trend, and collect them into a rectangular $N \times T$ matrix \mathbf{X}. The average $\langle\ldots\rangle$ is understood as taken according to some probability distribution whose functional shape is stable over time, but whose parameters may be timedependent. With cross-covariances and autocovariances factorized, non-random, and decoupled the temporal dependence of the distribution of variable is the same, and the structure of cross-correlations does not evolve in time

$$
\begin{equation*}
\mathcal{C}_{i a, j b}=C_{i j} A_{a b} \tag{2}
\end{equation*}
$$

we will consider these distinct cases:

- $C=A=I$
- $C \neq I \quad A=I$
- $C \neq A \neq I$
- Cross-correlations

Free Random Variables

A generalization of probability theory to noncommutative random variables, such as infinite (Hermitian) random matrices \mathbf{H}. It relies on the concept of freeness, which is noncommutative independence.

Classical Probability	Noncommutative probability (FRV)
x - random variable, $p(x)$	H - random matrix, $P(H)$
pdf	spectral density $\varrho(\lambda) d \lambda$
characteristic function $g_{x}(z) \equiv\left\langle e^{i z x}\right\rangle$	$\begin{gathered} \text { Green's function } G_{H}(z)=\frac{1}{N}\left\langle\operatorname{Tr} \frac{1}{z \cdot 1-H}\right\rangle \\ \text { or M - transform } M(z)=z G_{H}(z)-1 \\ \hline \end{gathered}$
independence	freeness
Addition of independent r.v.: The logarithm of the characteristic function, $\begin{gathered} r_{x}(z) \equiv \log g_{x}(z), \text { is additive }, \\ r_{x_{1}+x_{2}}(z)=r_{x_{1}}(z)+r_{x_{2}}(z) \end{gathered}$	Addition of f.r.v. The Blue's function $\begin{gathered} G_{H}\left(B_{H}(z)\right)=B_{H}\left(G_{H}(z)\right)=z, \text { is additive, } \\ B_{H_{1}+H_{2}}(z)=B_{H_{1}}(z)+B_{H_{2}}(z)-\frac{1}{z} \end{gathered}$
Multiplication of independent r.v.: Reduced to the addition problem via the exponential map, owing to $e^{x_{1}} e^{x_{2}}=e^{x_{1}+x_{2}}$	Multiplication of free r.v.: The N - transform, $\begin{gathered} M_{H}\left(N_{H}(z)\right)=N_{H}\left(M_{H}(z)\right)=z, \\ \text { is multiplicative } \\ N_{H_{1} H_{2}}(z)=\frac{z}{1+z} N_{H_{1}}(z) N_{H_{2}}(z) \end{gathered}$

Equal - time correlations

- data: 100 time series of returns observed during 990 consecutive days
- correlation structure is related to the non-synchronous character of financial transactions
- the evolution of "true" eigenvalues is governed by non-stationary random variables

VARMA $(1,1)$

We introduce weak spatio-temporal correlation structure by VARMA $\left(q_{1}, q_{2}\right)$ model

$$
\begin{equation*}
Y_{i a}-\sum_{\beta=1}^{q_{1}} b_{\beta} Y_{i, a-\beta}=\sum_{\alpha=0}^{q_{2}} a_{\alpha} \epsilon_{i, a-\alpha} . \tag{3}
\end{equation*}
$$

for $q_{1}=q_{2}=1$, using the FRV multiplication formula

$$
\begin{equation*}
z=r M N_{A}(r M) N_{C}(M) \tag{4}
\end{equation*}
$$

we end up with $6-t h$ order polynomial equation for $M \equiv M_{c}(z)$

$$
\begin{equation*}
r^{4} a_{0}^{2} a_{1}^{2}\left(a_{0}^{2}-a_{1}^{2}\right)^{2} M^{6}+\ldots=0 \tag{5}
\end{equation*}
$$

Empirical spectrum for macroeconomic data is similar to the one from financial markets, with largest eigenvalues separated. Simple $\operatorname{VARMA}(1,1)$ temporal structure fits well the data.

Cross-Correlations

We are interested in the correlations between two matrices of nonequal size. We remove internal correlations inside X and Y and consider the SVD of a matrix $M \times N$

$$
\begin{equation*}
G=\hat{Y} \hat{X}^{T} \tag{6}
\end{equation*}
$$

of $\hat{Y}-M=15$ sectorial CPI's and $\hat{X}-M=37$ different macroeconomic indicators like GDP, interest rates, unemployement rate etc.

Inflation is described by relatively few common factors, like eg. foreign exchange reserves or the confidence level indicator.

