Time lags in evacuation in the social force model

Przemysław Gawroński, Krzysztof Kułakowski, Jan Kantelhardt, Mirko Kämpf

Models of pedestrian behavior

- 1958 Hankin & Wright passengers flow in subway.
- 1970 Henderson Navier-Stokes equations approach to pedestrian flows.
- 1990 Helbing a pedestrian specific gas-kinetic (Boltzmann-like) model.
- 1995 Helbing a social forces model for pedestrian motion.
- 1997 Schadschneider cellular automaton model of pedestrian motion.
- 2003 Kirchner clogging in a cellular automaton model for pedestrian dynamics.

- All model quantities (places, velocities) are measurable and comparable with empirical data.
- Pedestrian models can provide valuable tools for designing and planning pedestrians area, subway, or rail-road stations, big buildings, shopping malls, etc.
- Analogies with gases and fluids an extreme example of mechanistic reductionism.

D. Helbing, I. Farkas and T. Vicsek "Simulating dynamical features of escape panic", Nature 407, 487-490, 2000

$$m_{i} \frac{d \vec{v}_{i}}{dt} = m_{i} \frac{v_{i}^{0} \vec{e}_{i}^{0}(t) - \vec{v}_{i}(t)}{\tau} + \sum_{i(\neq i)} \vec{f}_{ij} + \sum_{W} \vec{f}_{iW}$$

 m_i -mass of i-th pedestrian, 75kg v_i^0 -desired speed, $3\frac{m}{s}$ $\vec{e}_i^0(t)$ -desired direction $\vec{v}_i(t)$ -actual velocity τ -acceleration time, 0.5s \vec{f}_{ij} , \vec{f}_W -'interaction forces'

D. Helbing, I. Farkas and T. Vicsek "Simulating dynamical features of escape panic", Nature 407, 487-490, 2000

$$\vec{f}_{ij} = \left\{ A_i \exp\left(\frac{r_{ij} - d_{ij}}{B_i}\right) + k g \left(r_{ij} - d_{ij}\right) \right\} \vec{n}_{ij} + \kappa g \left(r_{ij} - d_{ij}\right) \Delta v_{ji}^t \vec{t}_{ij}$$

$$A_i = 2000$$
 N, $B_i = 0.08$ m, $k = 1.2 * 10^5 \frac{kg}{s^2}$, $\kappa = 2.4 * 10^5 \frac{kg}{ms}$

 $\vec{r}_i = \text{position of the i-th pedestrian}$ $d_{ij} = ||\vec{r}_i - \vec{r}_j|| - \text{distance between the pedestrians}$ $\vec{n}_{ij} = (n_{ij}^1, n_{ij}^2) = \frac{\vec{r}_i - \vec{r}_j}{d_{ij}} - \text{the normalized vector}$

pointing from j to i

 $r_{ij} = (r_i + r_j) - \text{sum of radii } r_i = 0.3 \text{ m and } r_j = 0.3 \text{ m}$

D. Helbing, I. Farkas and T. Vicsek "Simulating dynamical features of escape panic", Nature 407, 487-490, 2000

$$\vec{f}_{ij} = \left\{ A_i \exp\left(\frac{r_{ij} - d_{ij}}{B_i}\right) + k g(r_{ij} - d_{ij}) \right\} \vec{n}_{ij} + \kappa g(r_{ij} - d_{ij}) \Delta v_{ji}^t \vec{t}_{ij}$$

1

 $A_i = 2000$ N, $B_i = 0.08$ m, $k = 1.2 \times 10^5 \frac{kg}{s^2}$, $\kappa = 2.4 \times 10^5 \frac{kg}{ms}$

$$\vec{t}_{ij} = (-n_{ij}^{2}, n_{ij}^{1}) - tangential \ direction$$

$$\Delta v_{ji}^{t} = (\vec{v}_{j} - \vec{v}_{i}) \cdot \vec{t}_{ij} - tangential \ velocity \ difference$$

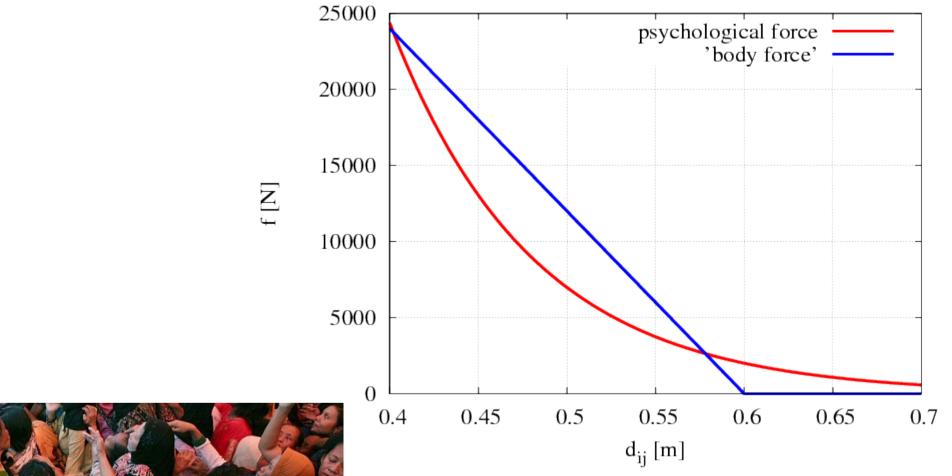
$$g(r_{ij} - d_{ij}) = \begin{cases} 0, r_{ij} < d_{ij} \\ r_{ij} - d_{ij}, r_{ij} \ge d_{ij} \end{cases}$$

D. Helbing, I. Farkas and T. Vicsek "Simulating dynamical features of escape panic", Nature 407, 487-490, 2000

$$\vec{f}_{iW} = \left\{ A_i \exp\left(\frac{r_i - d_{iW}}{B_i}\right) + k g (r_i - d_{iW}) \right\} \vec{n}_{iW}$$
$$+ \kappa g (r_i - d_{iW}) (\vec{v}_i \cdot \vec{t}_{iW}) \vec{t}_{iW}$$

 d_{iW} - distance to wall W $\vec{n_{iW}}$ - direction perpendicular to wall W $\vec{t_{iW}}$ - direction tangential to wall W

Simulation of crowd dynamics

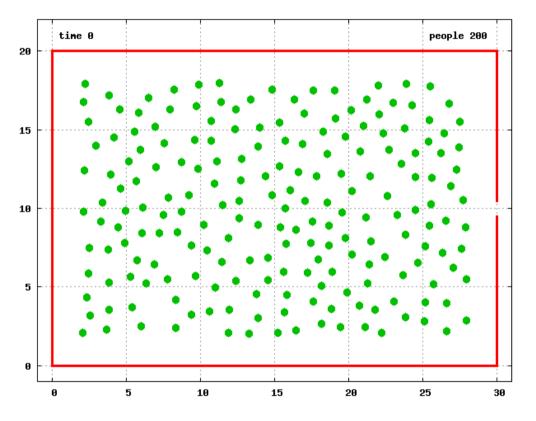


Simulation of crowd dynamics - snapshots

Ø

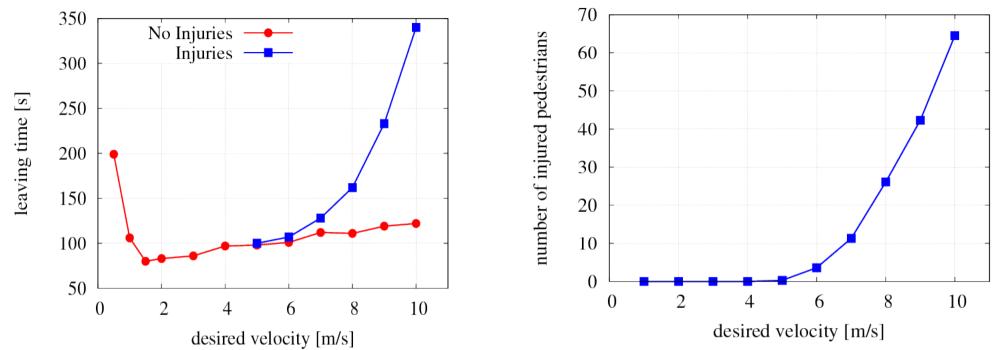
Ø

• initial state



• arch-like blocking of the exit

Simulation of crowd dynamics – 'faster-is-slower' effect

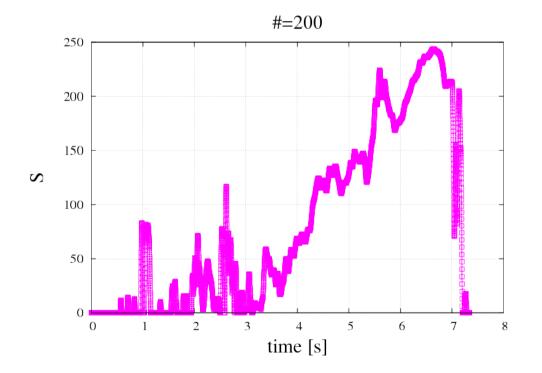


- Desired velocities $v_0 > 1.5 \text{ m} / \text{s}$ reduce the efficiency of leaving due to pushing, which causes additional friction effect.
- Above $v_0 = 5$ m/s pedestrians are injured if the pressure exceeds 1600Nm⁻¹ and become non-moving obstacles for others.

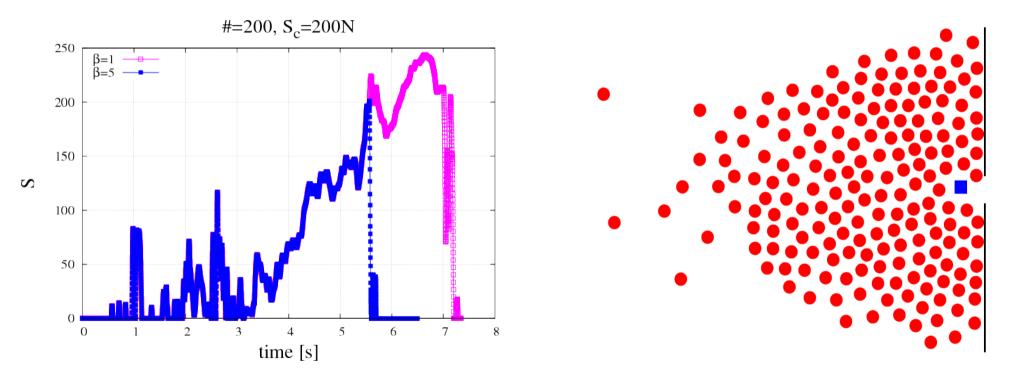
11

- The evidence from bent steel railings in several fatal crowd accidents have shown horizontal forces over 4500 N (equivalent to a weight of approximately 460 kg.)
- When the density of crowd becomes too large, pedestrians may die by e.g. compressive asphyxia.
- Before it happens they might want to leave the crowd, but on what condition it is possible?

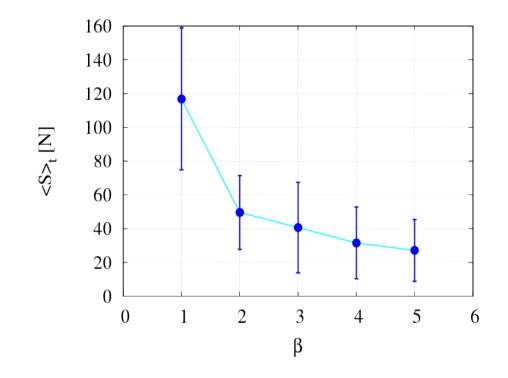
- *S* sum of modules of the physical (not the psychological) compressive forces acting on pedestrians.
- S a rough measure of pressure inconvenience in a crowd.



• Once *S* exceeds some predefined threshold *Sc* at one of the pedestrians *i*, the social force exerted by this pedestrian on the others is modified: $A'i = \beta * Ai$.



• The psychological interaction of pedestrian *i* forced the others to withdraw, *S* acting on him decreases.



- The average sum of forces decreases with β .
- The rate of this change decreases with β , as well.

Thrown out against one's will?

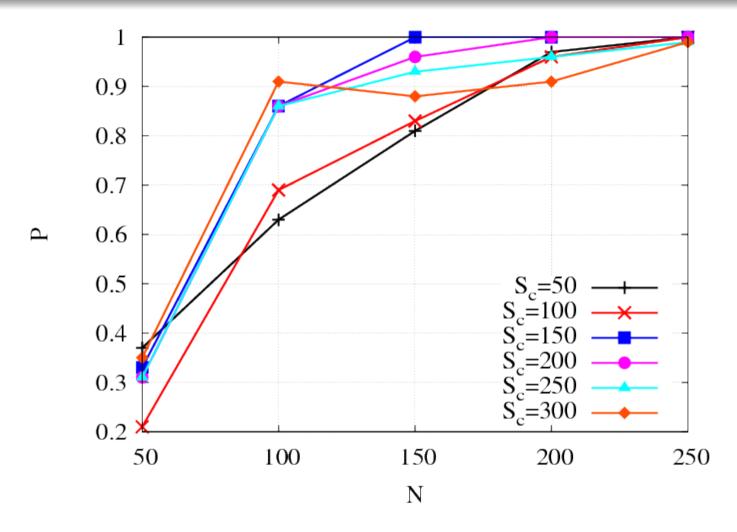
- Pedestrians cross the exit one by one. If density is large enough, it's impossible to move with respect to our neighbors.
- Can one withdraw from the crowd or she/he will be thrown out through the exit against her/his will?

- •Pedestrians, numbered by i=1, ..., N, are going to leave a room through a small exit.
- •The sum *Si* of compressive mechanical forces acting on each individual *i* is registered during the motion.
- •Once for individual *X* the sum *Sx* exceeds the threshold value *Sc*, the direction of the desired motion of this individual is reverted.
- •*K* nearest neighbors of *i*-*th* pedestrian decide to accompany her/him.
- •The desired direction of *K* individuals, who are closest to *X*, when the threshold *Sc* is exceeded is now equal desired direction of *X*. The repulsive psychological force between *X* and her/his neighbors is attractive now.

Thrown out against one's will?

- The group of *K*+1 individuals tries to evade the exit, as if they tried to help a victim of the interpersonal forces in the crowd.
- The outcome of the simulation is the probability *P*, that the crowd throws *X* out through the exit, despite her/his struggling to withdraw from the crowd.
- If *X* crosses the exit despite this change of her/his intention, we call the crowd *'jammed'*.

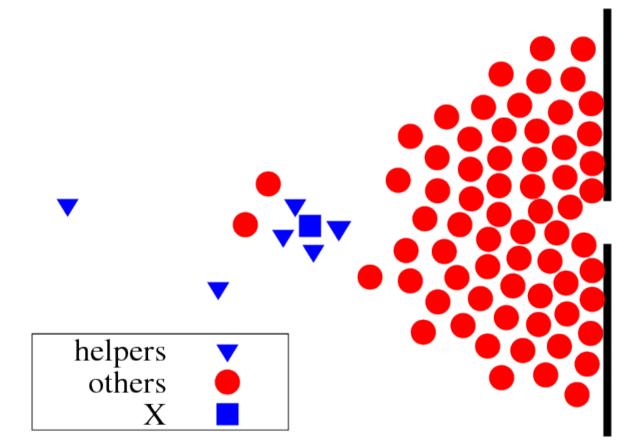
Thrown out against one's will?



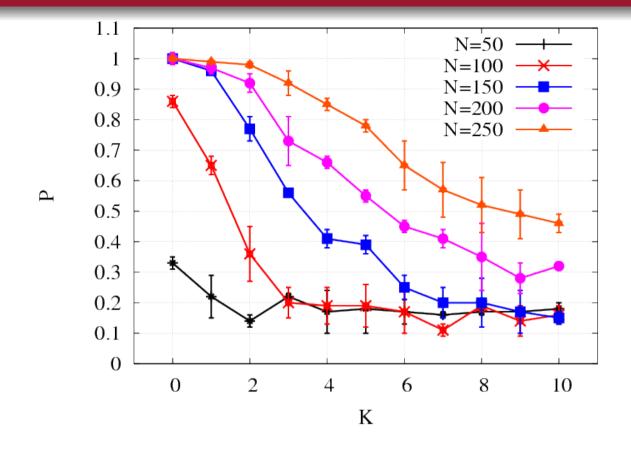
- K = 0 (no helpers). Average over 70 samples.
- The probability P weakly depends on Sc. The crowd size N is decisive.

Does collective action help?

• A successful help. A spatial configuration of individuals near the exit.



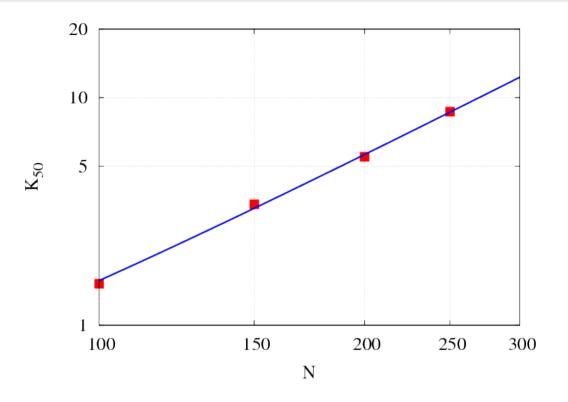
Does collective action help?



• Crowd size N is relevant, but can be to some extent neutralized by the number of helpers.

• For example, P close to 0.5 can be achieved in a crowd of N = 100 pedestrians with K about 2 helpers, in a crowd of N = 200 pedestrians with K about 5 helpers and so on. 20

Does collective action help?

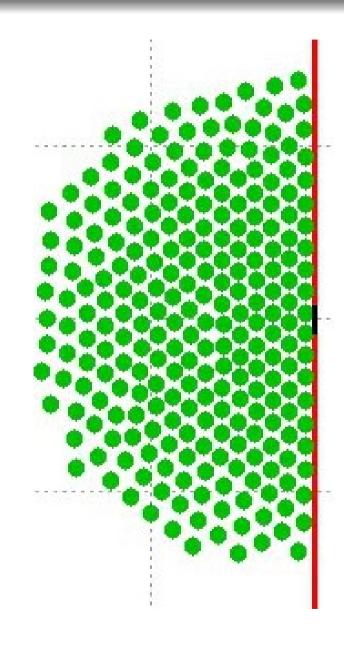


•How many helpers must be found to have a chance of 50 % to withdraw from the crowd?

 $K_{_{50}} \propto N^{\beta}, \beta = 1.88 \pm 0.05$

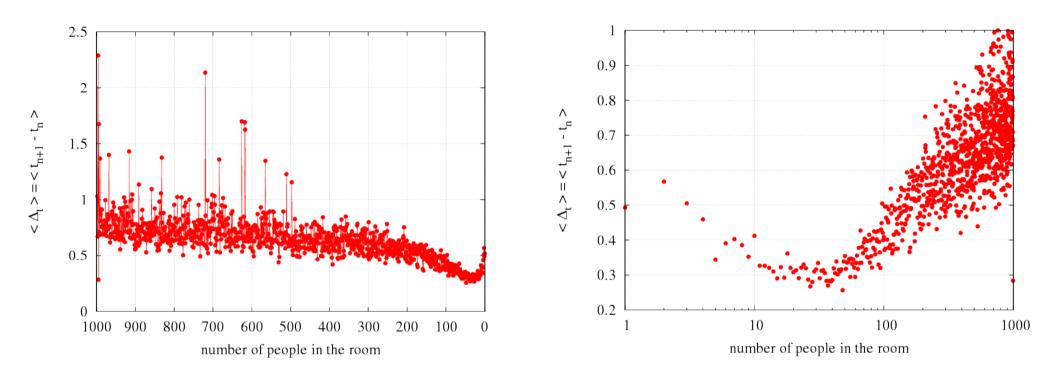
•However, as K_{50} cannot be greater than N, this behavior must end with some crossover for larger N.

A closed door scenario.



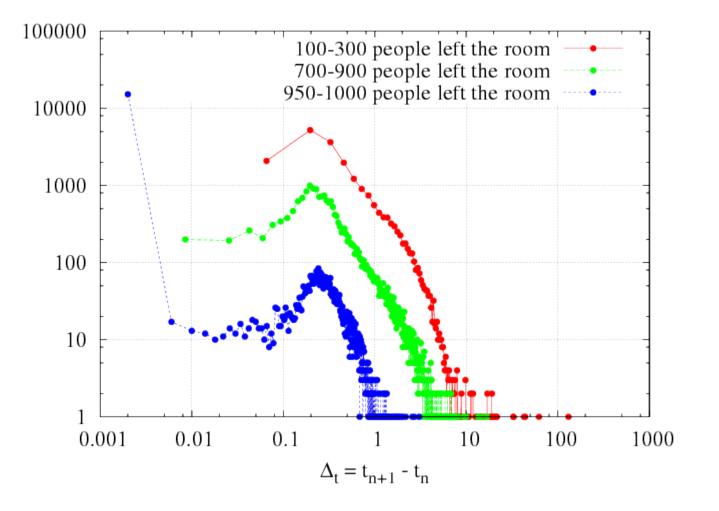
- N=1000 persons in a room with a small exit.
- At the initial state the door is closed and the people are crowded.
- When the crowd is formed we open the door, and we register the time at which each individual leaves the room.
- Time lags $\Delta_t = t_{n+1} t_n$

A closed door scenario:2 phases in the evacuation process



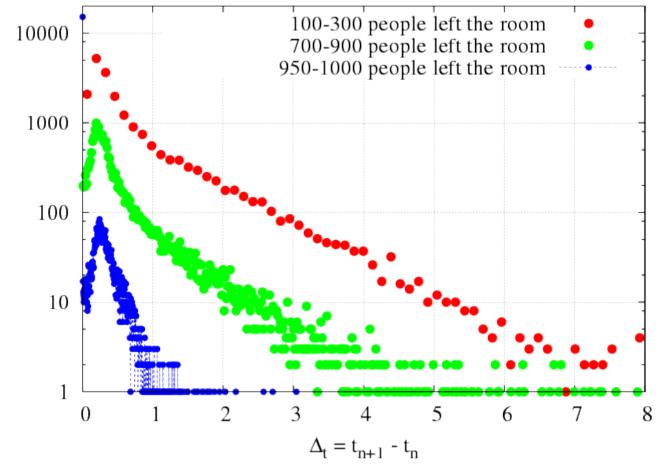
•Initially the mean length of the time lags decreases with the number of people in the room, then increases.

A closed door scenario: two characteristic times



I. Mean time interval between the exit events in a group of people leaving the room: 0.2s.

A closed door scenario: two characteristic times



II. Clogging time $\propto e^{-const t}$

The events of clogging of the group of people are independent.

Conclusions

•Our numerical results indicate that once the crowd size N exceeds 150-200 pedestrians, it is unlikely that a single individual can withdraw under one's own steam.

•The only way then is to mobilize a group of pedestrians nearby who are willing to help. Still, the necessary number of helpers increases with the size of the crowd.

• The analysis of the time intervals between the persons leaving the room shows the correlation within a group of people leaving the room and no correlation between separate groups leaving the room.

Thank you for your attention.