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Behaviour of Exchange Rates and Returns:  

Long Memory and Cointegration 

 

Or: 

Quite a few methods of financial econometrics come from 

physics/technical sciences 
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We study behaviour of time series of daily closing values for USD and EURO vs. 

PLN exchange rates and their returns.  

Financial data series are characterized by changing volatility, excess kurtosis and 

asymmetry of their probability density, and show signs of long memory.  

 

Due to volatility clustering, can be modelled with use of ARCH and GARCH type 

models, in which first equation -- describing expected value of the series -- can be 

of ARMA type, second equation describes conditional variance.  

 

It has been shown that additional explanatory variables in the expected value 

equation can improve quality of modelling and of forecasts. For bilateral exchange 

rates models such additional variables can be stock indices of corresponding 

countries.  

Cointegration analysis of exchange rates and stock indices is performed to check 

whether there is a stable dynamic economic equlibrium between them.  

 

The tools applied in such research stem originally from technical if not physical 

applications: the Hurst exponent, from hydrological study of 1950's; the ARMA 

models, from Box and Jenkins fundamental monograph of 1970's; cointegration 

analysis, from Engle and Granger concepts of equlibrium path as stable attractor; 

the Hansen stability tests and time-varying-parameter cointegration analysis uses 

methods of spectral analysis to estimate in semiparametric way long-run variance 

matrix. 

 

  



Operational definition of stationarity:  

1) expected value  E[Xt] constant, independent of time; 

2) variance D
2
(Xt) constant and finite, independent of time; 

3) covariance Cov(Xt, Xs) depends only on | t – s |.  

 

Stationary process is characterized by:  

1) Its mean: 
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3) Autocorrelation function:  

ˆ
0C

C
R  

4) Periodogram:  
n

n

CI cos
2

1
)(  

5) Spectral density function:  
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Testing for nonstationarity:  
 

1) Dickey-Fuller test: H0:  is nonstationary, vs. H1:  is stationary: 

Based on regression:  

 

 

Parameter  corresponds to an autoregression parameter: if then  and 

we have a random walk, if then  and the process is stationary.  

 

Test statistics: ADF= , to be compared with a proper critical value.  

 

2) Kwiatkowski, Phillips, Schmidt and Shin (KPSS) test
1
:  

H0:  is stationary, vs. H1:  is nonstationary: 

Based on representation:  

 

Parameter: variance of : if it is 0, then =const. and  is stationary,  

if ,  is a random walk and  is nonstationary.  

(The test statistics has a very complex distribution, asymptotic critical values 

given by KPSS are computed with use of limits which are quite complicated 

functions of Brownian bridges).  
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 D. Kwiatkowski, P. C. B. Phillips, P. Schmidt, and Y. Shin (1992): “Testing the Null 

Hypothesis of Stationarity against the Alternative of a Unit Root” Journal of Econometrics 54, 

159–178. 



Exchange rates, stock indices: behaviour similar to that of a random walk 

process:  

 

If , then    →  is a long-memory process; 

  → is nonstationary.   

 

But  is stationary, hence   is an example of integrated process.  

The process is integrated, with order of integration d, if it is nonstationary but 

its difference is stationary
2
. Order of integration is the least integer number of 

differences sufficient for obtaining stationarity.  

 

Cointegration of series  means that the series are 

nonstationary, but there is a linear combination which is stationary. 

More general case:  linear combination with lower order of integration than the 

variables (see Engle and Granger (1987)).  

Vector of coefficients of this linear combination is called cointegrating vector.  

 

Interpretation (see Maddala and Kim)
3
:  

If  we know that there is a stable long-run economic equilibrium, then – as series 

of question are as a rule nonstationary – one of possible cointegration vectors 

corresponds to this economic relationship.  

Interpretation (C.W.J. Granger): cointegrating relationship is an attractor.  

                                                             
2
 Robert F. Engle and Clive W.J. Granger, “Co-integration and Error Correction: 

Representation, Estimation, and Testing”, Econometrica, 1987, 55(2), 251-76.  

Sir Clive William John Granger (September 4, 1934 – May 27, 2009) was a British economist, and 

Professor Emeritus at the University of California, San Diego. In 2003, Granger was awarded 

theNobel Memorial Prize in Economic Sciences. In bestowing this honor, the Royal Swedish 

Academy of Sciences committee recognized that Granger and Robert F. Engle had made fundamental 

discoveries in the analysis of time series data and that this work was widely known fundamentally to 

have changed the way economists analyze financial and macroeconomic data. 

3
 Maddala, G.S. and In-Moo Kim, “Unit roots, cointegration and structural change”, 

Cambridge University Press, 1998.  
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Fig. 1: Closing daily values of USDPLN exchange rate 

 
Fig. 2. Logarithmic returns of USDPLN exchange rate daily data. 

 

 

Typical features of financial time series:  

 Higher volatility – higher risk of investment;  

 Asymmetric, non-normal distribution;  

 Volatility clustering – i.e., serial correlation of conditional variance.  
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Fractional integration parameter:  

A real number d, such that for a nonstationary series }{ ty  increments are stationary:  

tt
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where t
d y  are defined as:  
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and L denotes lag parameter.  

 

Properties of a series depend on d :   

 If d =1, the process is integrated and has infinite variance,  

 If d >1, the process is also nonstationary, and effects of external shocks 

increase in time.  

 If 0.5 1d , variance is infinite, hence the process is also nonstatonary, 

but in long time is mean-reverting (see Hosking (1981)
4
). Effects of 

shocks last for a long time. 

 If 0 < d < 0.5, the process is stationary, mean-reverting, with finite 

variance. 

 If d = 0, the process is mean-reverting in a short time, has finite variance, 

and shock effect diminish quickly. 

 If d <0, the process is antipersistent and stationary.   

 

Applications of fractional integration to financial data: exchange rates, asset 

returns, interest rates, inflation – see Baillie (1996)
5
 

                                                             
4
 Hosking, J.R.M. (1981), “Fractional differencing”, Biometrika, 68(1), 165–176. 

5
 Baillie, Richard T., (1996) “Long memory processes and fractional integration in 

econometrics,” Journal of Econometrics, 73(1), 5-59. 



Estimation of fractional integration parameter:  

 
The Geweke and Porter-Hudak

6
 method, among others, is based on periodogram regression:  

For a stationary series X and white noise u , if  and is stationary with zero mean 

and continuous spectral density, , then:  

)(|)exp(1|)( 2
u
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P.C.B. Phillips (1999) shows that
7
  for a nonstationary series this is a limit of periodogram 

ordinates. For fundamental frequencies , where N is number of observations,  

s = 1,2,…,m, a regression 

 

 
 

is estimated with OLS, hence this kind of fractional integration parameter estimates are called 

periodogram regressions.  

 

See also Phillips (1999) for corrections improving accuracy of periodogram ordinates 

computations.  

 

In periodogram regression, we can test hypothesis about d, e.g., whether d =0 for a stationary 

series, or d=1 for a nonstationary series.  

 

(Another method of fractional integration parameter estimation was introduced by Whittle. ) 

  

                                                             
6 Geweke, John i Porter-Hudak, Susan (1983), The estimation and application of long-

memory time series models, Journal of Time Series Analysis, 4, 221–228.  

7 P.C.B. Phillips, “Unit root log periodogram regression”, Cowles Foundation Discussion 

Paper No. 1244, http://cowles.econ.yale.edu/P/cd/d12a/d1244.pdf 

http://cowles.econ.yale.edu/P/cd/d12a/d1244.pdf


The Hurst exponent etc. 
See e.g., Edgar Peters “Chaos and order in capital markets”, Wiley, 1996 (2

nd
 edition),  

“Fractal market analysis: Applying chaos theory to investment and economics”, Wiley, 1994.  

„Modelowanie procesów na rynku kapitałowym za pomocą multifraktali” (Capital market modelling 

with use of multifractals), Adrianna Mastalerz-Kodzis ; Katowice, University of Economics 

in Katowice, 2003 

 

 Harold Edwin Hurst (1880–1978)  – introduced the Hurst exponent to optimize size of the Nile dam
8
.  

 

The Hurst exponent is used as a measure of long memory of a series:  

 

0<H<0.5 indicates a series with negative autocorrelation,  

H> 0.5 indicates a series with positive autocorrelation,  

H=0.5 indicates a random walk.  

 

Estimation:  Let tr  denote logarithmic returns, 
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HaNNSR )()](/[ , where a  – constant term, H  –  the Hurst exponent. 

  

                                                             
8
 Hurst, H. (1951), Long term storage capacity of reservoirs, Transactions of the American Society of 

Civil Engineers, 116, 770–799.   
 

http://en.wikipedia.org/wiki/Harold_Edwin_Hurst


 

Hence    

 

Example: Rescaled range figures for logarithmic returns of USDPLN daily data: 

(logs are to base 2) 

 

 Size     RS(avg)   log(Size)     log(RS) 

 2641      72.964      11.367      6.1891 

 1320      52.398      10.366      5.7114 

  660      32.131      9.3663      5.0059 

  330      23.909      8.3663      4.5795 

  165      16.679      7.3663      4.0600 

   82      11.353      6.3576      3.5051 

   41      7.2341      5.3576      2.8548 

   20      4.7010      4.3219      2.2330 

   10      3.0911      3.3219      1.6281 

 

Regression results (n = 9) 

 

                    coeff   std. error 

   Intercept     -0.17730     0.072459 

       Slope      0.56447    0.0092902 

 

Estimated Hurst exponent = 0.564465 

 

  



1. The augmented Dickey-Fuller test:  

H0: nonstationarity of a series  vs.  H1: stationarity  

  

The ADF test for: 

Sample up to 30
th
 April  Sample up to 19

th
 November 2010 

Variable Logarithmic 

 returns 

Variable Logarithmic 

 returns 

SP500close   -1.82469 [0.369]  -12.2809 [0.000] -1.90043 [0.332] -12.5817 [0.000] 

WIG20close: -1.14794 [0.699]  -21.0512 [0.000] -1.15186 [0.697] -21.6656 [0.000] 

USDPLNclose -1.56590 [0.500] -9.89291 [0.000] -1.61695 [0.474] -9.84206 [0.000] 

EURUSDclose -1.26116 [0.650] -10.6862 [0.000] -1.28047 [0.641] -10.6264 [0.000] 

EURPLNclose -2.12460 [0.235] -9.18958 [0.000] -2.20862 [0.203] -9.45797 [0.000] 

 

2. Fractional integration parameter estimates: 

Estimates for 

a series: 

Geweke and Porter-

Hudak estimates:  

t-Statistics (for H0: d=1) 

in parentheses 

Estimates for log returns 

of a series: 

Geweke and Porter-

Hudak estimates:  

t-Statistics (for H0: d=0) 

in parentheses 

SP500close  0.993118 (0.0527)  

[0.1306] 

SP500close 0.000702313 (0.0550) 

WIG20 close 1.09943 (0.0785) 

[1.2660] 

WIG20 close 0.0780061 (0.063505) 

USDPLNclose 1.07213 (0.0610703) ; 

[1.165] 

USDPLNclose 0.106393 (0.0575171) 

[1.850] 

 

3. The Hurst exponents:  

Hurst exponent:  for a variable for logarithmic returns 

SP500close  0.968876  0.551037 

WIG20 close 1.00452  0.568485 

USDPLNclose  1.00179  0.564514 

 

Values of the Hurst exponent estimates for log returns are close to value for a random walk; see also 

Czekaj, Woś, Żarnowski (2001)
9
 for test on H.   

  

                                                             
9 Czekaj, M. Woś, J. Żamowski, Efektywność giełdowego rynku akcji w Polsce z perspektywy dziesięciolecia, 

PWN, Warszawa 2001 



4. Cointegration analysis for exchange rate and indices:  

 

Model: OLS, using observations 2000/01/04-2010/10/18 (T = 

2641) 

Dependent variable: USDclose 

               coefficient   std. error    t-ratio   p-value 

---------------------------------------------------------- 

SP500close    0.00509112   3.82529e-05   133.1     0.0000  *** 

WIG20close   -0.00125702   2.04321e-05   -61.52    0.0000  *** 

 

Mean dependent var   3.432219   S.D. dependent var   0.623092 

Sum squared resid    911.3855   S.E. of regression   0.587667 

R-squared            0.971640   Adjusted R-squared   0.971629 

F(2, 2639)           45207.26   P-value(F)           0.000000 

Log-likelihood      -2342.475   Akaike criterion     4688.949 

Schwarz criterion    4700.707   Hannan-Quinn         4693.206 

rho                  0.988944   Durbin-Watson        0.021511 

 

Stock indices use as explanatory variables for an exchange rate was suggested by a paper by Bauwens, 

Rime and Succarat on daily returns of Norwegian krona
10

. 

If (1, –0,00509,  0.00126) is a cointegrating vector for USDPLN, SP500 and WIG20, then residuals of 

this regression should be stationary – do not quite seem to be:  

 

And the ADF test statistics for residuals, –2.81252, has asymptotic p-value 0.056 –higher than 5%.  

 

                                                             
10

 Bauwens, L., Pohlmeier, W., Veredas, D. (2008) High Frequency Financial Econometrics. Recent 
Developments, Physica-Verlag A Springer Company, Heidelberg. 

Bauwens, L., Rime, D., Succarat, G. (2008) Exchange Rate Volatility and the Mixture of Distribution 

Hypothesis, [in:] Bauwens et al., 7–29.  
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5. ARIMA model for USDPLN: 

We estimate an ARIMA model for exchange rate, using first difference, and with corresponding stock 

indices as additional explanatory variables: 

Model:  ARMAX, using observations 2000/01/05-2010/10/18 (T = 2640) 

Estimated using Kalman filter (exact ML) 

Dependent variable: (1-L) USDclose 

Standard errors based on Hessian 

 

               coefficient    std. error       z        p-value  

  -------------------------------------------------------------- 

  const        -0.000448115   0.000529548    -0.8462   0.3974    

  phi_1         1.30899       0.216640        6.042    1.52e-09  *** 

  phi_2        -0.559846      0.159075       -3.519    0.0004    *** 

  theta_1      -1.27272       0.226735       -5.613    1.99e-08  *** 

  theta_2       0.505183      0.168287        3.002    0.0027    *** 

  SP500close   -0.000178384   3.87039e-05    -4.609    4.05e-06  *** 

  WIG20close   -0.000190832   1.58094e-05   -12.07     1.51e-033 *** 

 

Mean dependent var  -0.000498   S.D. dependent var   0.030611 

Mean of innovations  2.83e-06   S.D. of innovations  0.029356 

Log-likelihood       5568.628   Akaike criterion    -11121.26 

Schwarz criterion   -11074.23   Hannan-Quinn        -11104.23 

 

                        Real  Imaginary    Modulus  Frequency 

  ----------------------------------------------------------- 

  AR 

    Root  1           1.1691    -0.6477     1.3365    -0.0805 

    Root  2           1.1691     0.6477     1.3365     0.0805 

  MA 

    Root  1           1.2597    -0.6267     1.4069    -0.0735 

    Root  2           1.2597     0.6267     1.4069     0.0735 

  ----------------------------------------------------------- 

All variables significant, roots of polynomials have moduli greater than 1, hence the model is stable.  
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6. The Engle
11

 test of the ARCH effect:  

The Engle test of the ARCH effect is based on the regression 

 
tktkttt ueeee 22

22

2

110

2 ...  

where e are error terms of the model in question. We check whether lagged error squares are jointly 

significant: the null 0...: 210 kH  corresponds to lack of the ARCH effect. Under the 

null, the test statistic is asymptotically distributed as )(2 k .  

Test statistic: LM = 307.262 

  with p-value = P(Chi-Square(5) > 307.262) = 2.74944e-064 

The null hypothesis of no ARCH effect is clearly rejected.  

 

7. The ARCH-GARCH models for logarithmic returns, with indices returns as additional 

explanatory variables: 

a) We estimate the ARCH model for logarithmic returns of USDPLN exchange rate
12

:  

b) The GARCH model requires smaller number of parameters, 

c) We compare forecasts from the GARCH model and GARCH with stock indices returns as 

additional variables
13

: 
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 Robert Engle: the winner of the 2003 Nobel Memorial Prize in Economic Sciences, sharing the 

award with Clive Granger, "for methods of analyzing economic time series with time-

varying volatility (ARCH)". Has B.S. in physics from Williams College, and M.S. in physics and PhD 

in economics from Cornell University.  

12
 R.Engle, Autoregressive Conditional Heteroskedasticity With Estimates of the Variance of UK 

Inflation,  Econometrica 50 (1982): 987-1008. 

13
 Bollerslev, Tim (1986). "Generalized Autoregressive Conditional Heteroskedasticity". Journal of 

Econometrics 31 (3): 307–327. 

Bollerslev, Tim (1987). "A Conditional Heteroskedastic Time Series Model for Speculative Prices and 

Rates of Return". The Review of Economics and Statistics 69 (3): 542–547. 
Bollerslev, Tim (1990). "Modeling the Coherence in Short-run Nominal Exchange Rates: A 

Multivariate Generalized ARCH Model". The Review of Economics and Statistics 72 (3): 498–505. 

Bollerslev, Tim (1992). "ARCH Modeling in Finance: A Review of the Theory and Empirical 

Evidence". Journal of Econometrics 52 (1-2): 5–59. 

http://en.wikipedia.org/wiki/Nobel_Memorial_Prize_in_Economic_Sciences
http://en.wikipedia.org/wiki/Clive_Granger
http://en.wikipedia.org/wiki/Time_series
http://en.wikipedia.org/wiki/Volatility_(finance)
http://en.wikipedia.org/wiki/Autoregressive_conditional_heteroskedasticity


a) The ARCH model requires greater number of lags in conditional variance equation: 

Model: WLS (ARCH), using observations 2000/01/13-2010/11/19 (T = 

2656) 

Dependent variable: rlUSD 

Variable used as weight: 1/sigma 

 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  rlUSD_1     0.0748882    0.0216649     3.457    0.0006    *** 

  rlUSD_2     0.0416609    0.0216561     1.924    0.0545    * 

 

  alpha(0)    0.314319     0.0456291     6.889    7.01e-012 *** 

  alpha(1)    0.111278     0.0191041     5.825    6.41e-09  *** 

  alpha(2)    0.112016     0.0188105     5.955    2.94e-09  *** 

  alpha(3)    0.0223747    0.0189307     1.182    0.2373    

  alpha(4)    0.204744     0.0188193    10.88     5.32e-027 *** 

  alpha(5)    0.181330     0.0191122     9.488    5.07e-021 *** 

 

b) The generalized ARCH model, GARCH, seems to be better solution, as it needs as a rule 1 lagged 

squared error and 1 lag of conditional variance:  

 

Model 33: GARCH, using observations 2000/01/06-2010/11/19 (T = 2661) 

Dependent variable: rlUSD 

Standard errors based on Hessian 

 

             coefficient   std. error     z       p-value  

  -------------------------------------------------------- 

  rlUSD_1     0.0702018    0.0204575     3.432   0.0006    *** 

  rlUSD_2     0.0354072    0.0204281     1.733   0.0830    * 

 

  alpha(0)    0.0121354    0.00283214    4.285   1.83e-05  *** 

  alpha(1)    0.0790725    0.0105393     7.503   6.25e-014 *** 

  beta(1)     0.905264     0.0118621    76.32    0.0000    *** 

 

Mean dependent var  -0.013443   S.D. dependent var   0.924162 

Log-likelihood      -3141.544   Akaike criterion     6295.088 

Schwarz criterion    6330.406   Hannan-Quinn         6307.869 

  



 

c) Next we estimate similar GARCH model with stock indices returns as additional variables in a 

mean equation, and compare accuracy of forecasts for last month’s data:  

 

Model GARCH Without stock indices With stock indices 

Mean Error  0.1779 0.1769 

Mean Squared Error  1.3414 1.2460 

Root Mean Squared Error  1.1582 1.1163 

Mean Absolute Error  0.9747 0.9480 

Bias proportion, UM  0.0236 0.0251 

Regression proportion, UR  0.1431 0.2625 

Disturbance proportion, UD  0.8333 0.7124 

 

 

What shall we do about lack of cointegration? 

One possibility: use the Hansen method and tests
14

:  

The FM-OLS method of estimation can be applied to models with structural 

change at unknown moment – the estimator is semiparametric, uses spectral 

analysis tools to estimate long-run variance of residuals and to use it for 

improving quality of estimation; 

 

The Hansen tests, AvgF, SupF and Lc test, can be used to check whether there is 

a changing-parameter cointegration relationship. Are based on Richard 

Quandts idea of testing structural break at unknown point in time –we should 

compute values of the F-test statistic for all possible moments of break in (15%N, 85%N), N – number 

of observations15.  

 

                                                             
14 Gregory, Allan W. & Hansen, Bruce E., 1996. "Residual-based tests for cointegration in models with regime 

shifts," Journal of Econometrics, Elsevier, vol. 70(1), pages 99-126, January; Hansen, Bruce E, 1996. "Inference 

When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, 

vol. 64(2), pages 413-30, March; Hansen, Bruce E, 1992. "Tests for Parameter Instability in Regressions with 

I(1) Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 

321-35, July. 

15 Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change 

Point," Econometrica; Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent 

Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-58, May. 

http://ideas.repec.org/a/ecm/emetrp/v64y1996i2p413-30.html
http://ideas.repec.org/a/ecm/emetrp/v64y1996i2p413-30.html
http://ideas.repec.org/a/ecm/emetrp/v64y1996i2p413-30.html
http://ideas.repec.org/s/ecm/emetrp.html
http://ideas.repec.org/a/bes/jnlbes/v10y1992i3p321-35.html
http://ideas.repec.org/a/bes/jnlbes/v10y1992i3p321-35.html
http://ideas.repec.org/a/bes/jnlbes/v10y1992i3p321-35.html
http://ideas.repec.org/s/bes/jnlbes.html
http://ideas.repec.org/a/ecm/emetrp/v61y1993i4p821-56.html
http://ideas.repec.org/a/ecm/emetrp/v61y1993i4p821-56.html
http://ideas.repec.org/a/ecm/emetrp/v61y1993i4p821-56.html
http://ideas.repec.org/s/ecm/emetrp.html
http://ideas.repec.org/a/ecm/emetrp/v59y1991i3p817-58.html
http://ideas.repec.org/a/ecm/emetrp/v59y1991i3p817-58.html
http://ideas.repec.org/a/ecm/emetrp/v59y1991i3p817-58.html
http://ideas.repec.org/s/ecm/emetrp.html


… 

Spectral density function corresponds to long-run variance of a process, 

periodogram ordinates measure input to the whole variance of a particular 

frequency.  
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Thank you for kind attention 

 
 


