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INTRODUCTION

MOTIVATION:

� fractal dimensions are very often computed (also in econophysics)

� usually accuracy of these computations is not discussed or misunderstood (overestimated!)

GOALS:

� to find an estimate of the accuracy

� dependence on the number of available data points (ntot) in the sample

� is there a simple scaling of the error as a function of ntot ?

� dependence on dimensionality (and other factors)
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INTRODUCTION

MATHEMATICAL SUBTLETIES

� different mathematical definitions of fractal exponents

[J. Theiler, J. Opt. Soc. Am A7 (1990) 1055]

� problems for "wild" sets – pseudofractals [AZG, J. Phys. A34 (2001) 7933]

� problem of equivalence of different computational algorithms

� indirect computations via generalized Hurst exponents and its traps 

[S. Jaffard, SIAM J. Math. Anal. 28 (1997) 944; 971]
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INTRODUCTION

PRACTICAL PROBLEMS

� real computations � finite samples � such sample can correspond to different fractal sets!

("physical fractal" vs. mathematical fractal)

� infinite limit in the fractal exponent definition � problems to obtain proper results

[AZG, J. Phys. A34 (2001) 7933]

� linear fit/scaling problems (arbitrary choice of fitted points)

[McCauley, Physica A309 (2002) 183; AZG, J. Skrzat, J. Anat. (2006) 208]

� is "σ" of the log-log fit adequate to estimate the computational accuracy?

� various computational algorithms

� various representations of physical objects (e.g. digitalization of continuous quantities like

colors, different shapes of covering sets etc.)
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INTRODUCTION

BOX COUNTING ALGORITHM

� ntot — number of data points in a sample

� N = 21, 22, 23, … — enumerates successive divisions of the scale (ε =1/N)

� choice of points that are to be fitted to the power curve – linear log-log fit (quite arbitrary, 

k – points are fitted, selected by „visual inspection”)

� determination of the scaling exponent (α) and the standard deviation for the fit (σ)

� for small sets (small ntot) k is small and the result can be quite erratic and σ relatively large 
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COMPUTATIONS – 1D fractals

CANTOR SETS

The parameter ntot (set size) is taken form 26 to 216 . The mathematical dimension is

d = log 2 / log 3 = 0.630929…

In the plots there are displayed actual absolute errors = |computed result – mathematical result| 

(black crosses) and standard errors (blue circles) calculated for each fit (value of α) for a given 

set (ntot).
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COMPUTATIONS – 1D fractals
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COMPUTATIONS – 1D fractals

ASYMMETRIC CANTOR SETS

Similar analysis was done for the (multifractal) asymmetric Cantor set for dimensions

d(0) = 0.6942  and  d(2) = 0.6831

The parameter ntot was taken form 34 to 310 . 
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COMPUTATIONS – 1D fractals
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COMPUTATIONS – 1D fractals
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COMPUTATIONS – 2D fractals

SIERPIŃSKI TRIANGLE

The parameter ntot (set size) is taken form 102 to 105 . The mathematical dimension is

d = log 3 / log 2 = 1.58496
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COMPUTATIONS – 2D fractals
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COMPUTATIONS – 2D fractals

KOCH CURVE

The parameter ntot (set size) is taken form 102 to 105 . The mathematical dimension is

d = log 4 / log 3 = 1.26186
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COMPUTATIONS – 2D fractals
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COMPUTATIONS – 2D fractals

WEIERSTRASS-MANDELBROT CURVE  – D=1.5

The parameter ntot (set size) is taken form 102 to 106 . The mathematical dimension is

d = 1.5
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COMPUTATIONS – 2D fractals
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COMPUTATIONS – 2D fractals

WEIERSTRASS-MANDELBROT CURVE  – D=1.8

The parameter ntot (set size) is taken form 102 to 106 . The mathematical dimension is

d = 1.8
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COMPUTATIONS – 2D fractals
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CONCLUSIONS

BASIC RESULTS:

� the computational accuracy (error) is several times larger than the standard error

estimated for the linear fit in the log-log plot (σ)

� accuracy of computations scales with ntot according to the inverse power law:

error ~ 1 / ntot
α

� for 1D fractals the scaling exponent α ≈ 1/2

� for 2D fractals the scaling exponent α ≈ 1/4 (Koch curve & Sierpiński carpet)

� for W-M functions α ≈ 1/8÷1/6 (W-M curves)
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CONCLUSIONS

ABSOLUTE ACCURACY:

±0.100±0.150±0.2002-D W-M curve

±0.020±0.030±0.0602-D fractals

±0.002±0.006±0.0201-D fractals

100 00010 0001000ntot = 
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CONCLUSIONS

SUMMARY:

� standard error of the linear fit considerably overestimates accuracy of the algorithm

� for typical fractals errors in the 2D case are square roots of the errors for 1D fractals –

as one can expect (ntot
2 points necessary to cover the square)

� for W-M functions convergence of error is slower – fractal structure is present in one

dimension only (along y-axis)

� for realistic, non-ideal fractals (with noise) one can expect greater errors

� differences between adjacent sets of the linear fit are better error estiamte than σ
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THANKS FOR YOUR ATTENTION !


