ACCURACY OF THE BOX COUNTING ALGORITHM

A. Z. Górski, S. Drożdż, A. Mokrzycka, J. Pawlik Complex Systems Theory Lab., IFJ PAN, Kraków

MOTIVATION:

- ✓ fractal dimensions are very often computed (also in econophysics)
- ✓ usually accuracy of these computations is not discussed or misunderstood (overestimated!)

GOALS:

- \checkmark to find an estimate of the accuracy
- \checkmark dependence on the number of available data points (n_{tot}) in the sample
- $\checkmark\,$ is there a simple scaling of the error as a function of $n_{tot}\,?$
- ✓ dependence on dimensionality (and other factors)

MATHEMATICAL SUBTLETIES

- ✓ different mathematical definitions of fractal exponents
 [J. Theiler, J. Opt. Soc. Am A7 (1990) 1055]
- ✓ problems for "wild" sets pseudofractals [AZG, J. Phys. A34 (2001) 7933]
- ✓ problem of equivalence of different computational algorithms
- ✓ indirect computations via generalized Hurst exponents and its traps [S. Jaffard, SIAM J. Math. Anal. 28 (1997) 944; 971]

PRACTICAL PROBLEMS

- ✓ real computations → finite samples → such sample can correspond to different fractal sets!
 ("physical fractal" vs. mathematical fractal)
- ✓ infinite limit in the fractal exponent definition → problems to obtain proper results [AZG, J. Phys. A34 (2001) 7933]
- ✓ linear fit/scaling problems (arbitrary choice of fitted points) [McCauley, Physica A309 (2002) 183; AZG, J. Skrzat, J. Anat. (2006) 208]
- \checkmark is " σ " of the log-log fit adequate to estimate the computational accuracy?
- ✓ various computational algorithms
- ✓ various representations of physical objects (e.g. digitalization of continuous quantities like colors, different shapes of covering sets etc.)

BOX COUNTING ALGORITHM

 \checkmark n_{tot} — number of data points in a sample

 \checkmark N = 2¹, 2², 2³, ... — enumerates successive divisions of the scale (ϵ =1/N)

- ✓ choice of points that are to be fitted to the power curve linear log-log fit (quite arbitrary, k points are fitted, selected by "visual inspection")
- \checkmark determination of the scaling exponent (α) and the standard deviation for the fit (σ)

$$d(q) = \frac{1}{1-q} \lim_{N \to \infty} \frac{\ln \sum_{i} p_{i}^{q}(N)}{\ln N}$$

> for small sets (small n_{tot}) k is small and the result can be quite erratic and σ relatively large

CANTOR SETS

The parameter n_{tot} (set size) is taken form 2^6 to 2^{16} . The mathematical dimension is

 $d = \log 2 / \log 3 = 0.630929...$

In the plots there are displayed actual absolute errors = |computed result - mathematical result| (black crosses) and standard errors (blue circles) calculated for each fit (value of α) for a given set (n_{tot}).

ASYMMETRIC CANTOR SETS

Similar analysis was done for the (multifractal) asymmetric Cantor set for dimensions d(0) = 0.6942 and d(2) = 0.6831

The parameter n_{tot} was taken form $3^4\ to\ 3^{10}$.

FENS - Nov 2010

SIERPIŃSKI TRIANGLE

The parameter $n_{tot}\,$ (set size) is taken form $10^2\,to\,10^5$. The mathematical dimension is

 $d = \log 3 / \log 2 = 1.58496$

FENS - Nov 2010

KOCH CURVE

The parameter n_{tot} (set size) is taken form 10^2 to 10^5 . The mathematical dimension is d = log 4 / log 3 = 1.26186

FENS - Nov 2010

WEIERSTRASS-MANDELBROT CURVE – D=1.5

The parameter n_{tot} (set size) is taken form 10^2 to 10^6 . The mathematical dimension is

d = 1.5

WEIERSTRASS-MANDELBROT CURVE – D=1.8

The parameter n_{tot} (set size) is taken form 10^2 to 10^6 . The mathematical dimension is

d = 1.8

CONCLUSIONS

BASIC RESULTS:

- > the computational accuracy (error) is several times larger than the standard error estimated for the linear fit in the log-log plot (σ)
- > accuracy of computations scales with n_{tot} according to the inverse power law: error ~ 1 / n_{tot}^{α}
- > for 1D fractals the scaling exponent $\alpha \approx 1/2$
- > for 2D fractals the scaling exponent $\alpha \approx 1/4$ (Koch curve & Sierpiński carpet)
- > for W-M functions $\alpha \approx 1/8 \div 1/6$ (W-M curves)

CONCLUSIONS

ABSOLUTE ACCURACY:

n _{tot} =	1000	10 000	100 000
1-D fractals	±0.020	±0.006	±0.002
2-D fractals	±0.060	±0.030	±0.020
2-D W-M curve	±0.200	±0.150	±0.100

CONCLUSIONS

SUMMARY:

- > standard error of the linear fit considerably overestimates accuracy of the algorithm
- For typical fractals errors in the 2D case are square roots of the errors for 1D fractals as one can expect (n_{tot}² points necessary to cover the square)
- For W-M functions convergence of error is slower fractal structure is present in one dimension only (along y-axis)
- > for realistic, non-ideal fractals (with noise) one can expect greater errors
- > differences between adjacent sets of the linear fit are better error estiamte than σ

THANKS FOR YOUR ATTENTION !

