Fractality &	& Multifractality	Hurst vs Hölder	FFM	Multifractal noise	Conclusions
	Multifracta	Background	of Mon	ofractal Finite	

Multifractal Background of Monofractal Finite Signals with Long Memory

G. Pamuła, D. Grech

Institute of Theoretical Physics University of Wrocław Max Born Sq. 9, 50-204 Wrocław

FENS 5 , Warsaw, 25–27 November 2010

Fractality & Multifractality	Hurst vs Hölder	FFM	Multifractal noise	Conclusions
Outline				

- 1 Fractality and Multifractality general overview
- 2 Generalized Hurst exponents vs. Hölder description
- 3 Fourier transform based method producing stationary time series with long-memory
- 4 Searching for multifractal noise in monofractal signals with long memory – numerical results & analytic fit
- 5 Discussion and conclusions

Monofractality

Self-similar objects, scaling properties do not depend on particular scale

Multifractality

Self-similar objects, scaling properties are different for various scales

Multifractality

Monofractality

Self-similar objects, scaling properties do not depend on particular scale

Multifractality

Self-similar objects, scaling properties are different for various scales

In terms of TS

The same scaling properties for all time scales (e.g. seconds, minutes, hours)

In terms of TS

Different scaling properties for various time scales

Fractality & Multifractality	Hurst vs Hölder	FFM	Multifractal noise	Conclusions
Multifractality				

$$t: \ldots < S_x^{(i)} < S_x^{(i+1)} < \ldots < S_x^{(j)} < \ldots$$

fractal properties for $S_x^{(i)} < t < S_x^{(i+1)}$ vary with i

MF-DFA most effective tool to search for multifractality in time series [J. Kantelhardt, et.al. Phys.A **316** (2002) 87-114]

 $\{X(i)\} - \text{time series, } \tau - \text{size of non-overlapping boxes,}$ $N_{\tau} - \# \text{ of boxes}$ $F_{q}(\tau) = \left\{\frac{1}{2N_{\tau}}\sum_{i=1}^{2N_{\tau}} \left[F^{2}(i,\tau)\right]^{\frac{q}{2}}\right\}^{\frac{1}{q}} \qquad q \neq 0$ $F_{0}(\tau) = \left\{\frac{1}{4N_{\tau}}\sum_{i=1}^{2N_{\tau}} \ln \left[F^{2}(i,\tau)\right]\right\} \qquad q = 0$

G. Pamuła, D. Grech

Fractality & Multifractality	Hurst vs Hölder	FFM	Multifractal noise	Conclusions
Multifractality				

$$t: \ldots < S_x^{(i)} < S_x^{(i+1)} < \ldots < S_x^{(j)} < \ldots$$

fractal properties for $S_x^{(i)} < t < S_x^{(i+1)}$ vary with i

MF-DFA most effective tool to search for multifractality in time series [J. Kantelhardt, et.al. Phys.A **316** (2002) 87-114]

 ${X(i)}$ - time series, τ - size of non-overlapping boxes, N_{τ} - # of boxes

where

$$F^{2}(i,\tau) = \frac{1}{\tau} \sum_{k=1}^{\tau} \left\{ X \left[N - (i - N_{\tau}) \tau + k \right] - \tilde{X}_{i}(k) \right\}^{2}$$

G. Pamuła, D. Grech

FFM

Translation between Hölder and Hurst description of multifractality

Singularity spectrum $f(\alpha)$ is derived as Legandre transform of classical multifractal scaling exponents $\tau(q) = qh(q) - 1$.

$$\alpha(q) = \tau'(q) = h(q) + qh'(q)$$

$$f(\alpha) = q\alpha - \tau(\alpha) = q[\alpha - h(q)] + 1$$

In this description $\alpha(q)$ is called the Hölder exponent and $f(\alpha)$ is its spectrum.

Generalized Hurst and Hölder descriptions for real data

Figure: Example of Hurst and Hölder descriptions for entire S&P500 index and its second part (since 1997 till now) [Ł. Czarnecki, D. Grech Acta Phys.Pol. A **117** (2010) 4]

G. Pamuła, D. Grech

Fourier Filtering Method (FFM)

Algorithm producing long memory correlated time series [C.-K. Peng, et.al. Phys.Rev.A 44, 2239 (1991)]

$$C(\ell) = \langle x_i x_{i+1} \rangle \sim \ell^{-\gamma}, \quad \gamma \in [0,1] \quad \gamma = 2 - 2H$$

- **1** produce a stationary sequence ξ_i , i = 1, ..., L uncorrelated random numbers drawn from $\mathcal{N}(0, \sigma)$ distribution
- 2 calculate Fourier transform of generated data

$$\tilde{\xi}_q = \sum_{k=0}^{L-1} \xi_k e^{-2\pi i \frac{qk}{L}}$$

3 apply filter function $S(q) = q^{\gamma-1}$

$$\tilde{x}_q = \sqrt{S(q)} \ \tilde{\xi}_q$$

4 calculate inverse Fourier transform of filtered sequence \tilde{x}_q to obtain time series with desired long range correlation (γ)

G. Pamuła, D. Grech

Fractality & Multifractality	Hurst vs Hölder	FFM	Multifractal noise	Conclusions

Example

Figure: The test of long memory for artificially constructed (FFM) time series

G. Pamuła, D. Grech

Fractality & Multifractality	Hurst vs Hölder	FFM	Multifractal noise	Conclusions
Real time series				

characteristics

Fractality & Multifractality	Hurst vs Hölder	FFM	Multifractal noise	Conclusions
Real time series				

characteristics

Fractality & Multifractal	ity Hurst vs Hölder	FFM	Multifractal noise	Conclusions
Real time s	series			

Fractality & Multifractality	Hurst vs Hölder	FFM	Multifractal noise	Conclusions
Real time ser	ries			

How much do they affect multifractal structure of TS ?

Fractality & Multifractality	Hurst vs Hölder	FFM	Multifractal noise	Conclusions
Real time series				

How much do they affect multifractal structure of TS ?

Do they produce multifractal structure ('multifractal noise') in monofractal signals ?

Fractality & Multifractality	Hurst vs Hölder	FFM	Multifractal noise	Conclusions
Real time series				
characteristics				

How much do they affect multifractal structure of TS ?

Do they produce multifractal structure ('multifractal noise') in monofractal signals ?

 $\Delta h(\gamma, L) \qquad \Delta \alpha(\gamma, L)$

G. Pamuła, D. Grech

Investigated time series

Monofractal time series with long memory generated with FFM

$$L = 2^9, 2^{10}, 2^{12}, 2^{14}, 2^{16}, 2^{18}, 2^{19}, 2^{20}$$

$$\gamma = 0.1, \ 0.2, \ 0.3, \ 0.4, \ 0.5, \ 0.6, \ 0.7, \ 0.8, \ 0.9$$

Investigated time series

Monofractal time series with long memory generated with FFM

$$L=2^9,\ 2^{10},\ 2^{12},\ 2^{14},\ 2^{16},\ 2^{18},\ 2^{19},\ 2^{20}$$

 $\gamma = 0.1, \; 0.2, \; 0.3, \; 0.4, \; 0.5, \; 0.6, \; 0.7, \; 0.8, \; 0.9$

Statistical ensemble of 100 series for each parameter pair (γ , L) was studied

G. Pamuła, D. Grech

Scaling range for MFDFA method $L = 2^{12} = 4096$

G. Pamuła, D. Grech

Scaling range for MFDFA method $L = 2^{16} = 65536$

G. Pamuła, D. Grech

FFM

Scaling range for MFDFA method $L = 2^{20} = 1048576$

G. Pamuła, D. Grech

FENS2010

Generalized Hurst exponent and Hölder exponent spectrum $L = 2^{12} = 4096$, $\gamma = 0.1$ (monofractal)

G. Pamuła, D. Grech

Generalized Hurst exponent and Hölder exponent spectrum $L = 2^{12} = 4096$, $\gamma = 0.5$ (monofractal)

G. Pamuła, D. Grech

Generalized Hurst exponent and Hölder exponent spectrum $L = 2^{12} = 4096$, $\gamma = 0.9$ (monofractal)

G. Pamuła, D. Grech

FFM

Generalized Hurst exponent and Hölder exponent spectrum $L = 2^{16} = 65536$, $\gamma = 0.1$ (monofractal)

G. Pamuła, D. Grech

Generalized Hurst exponent and Hölder exponent spectrum $L = 2^{16} = 65536$, $\gamma = 0.5$ (monofractal)

G. Pamuła, D. Grech

Generalized Hurst exponent and Hölder exponent spectrum $L = 2^{16} = 65536$, $\gamma = 0.9$ (monofractal)

G. Pamuła, D. Grech

FFM

Generalized Hurst exponent and Hölder exponent spectrum $L = 2^{20} = 1048576$, $\gamma = 0.1$ (monofractal)

G. Pamuła, D. Grech

Generalized Hurst exponent and Hölder exponent spectrum $L = 2^{20} = 1048576$, $\gamma = 0.5$ (monofractal)

G. Pamuła, D. Grech

FFM

Generalized Hurst exponent and Hölder exponent spectrum $L = 2^{20} = 1048576$, $\gamma = 0.9$ (monofractal)

G. Pamuła, D. Grech

Fractality & Multifractality	Hurst vs Hölder	FFM	Multifractal noise	Conclusions
Finite size effec	ts			

Hurst description, $L = 2^{12} = 4096$

Figure: Maximal and minimal value of generalized Hurst parameter

G. Pamuła, D. Grech

FENS2010

Fractality & Multifractality	Hurst vs Hölder	FFM	Multifractal noise	Conclusions
F 1 1. 1 CC				
Finite size effect	ts			

Hurst description, $L = 2^{16} = 65536$

Figure: Maximal and minimal value of generalized Hurst parameter

FENS2010

Fractality & Multifractality	Hurst vs Hölder	FFM	Multifractal noise	Conclusions
Finite size effec	ts			

Hurst description, $L = 2^{20} = 1048576$

Figure: Maximal and minimal value of generalized Hurst parameter

FENS2010

Hurst description

Figure: Finite size effects revealing multifractality in monofractal signals

G. Pamuła, D. Grech

FENS2010

Hurst description

Figure: 95% confidence level for multifractal effects of finite shuffled signals

G. Pamuła, D. Grech

Hölder description

Figure: Singularity spectrum width $\Delta \alpha(L)$ for shuffled signals with long memory G. Pamula, D. Grech FENS2010

Hölder description

FENS2010

G. Pamuła, D. Grech

Long memory effects

Hölder description

Figure: Dependence between singularity spectrum width and residual long memory effect on multifractal spectrum width

G. Pamuła, D. Grech

Fractality & Multifractality	Hurst vs Hölder	FFM	Multifractal noise	Conclusions
	сс .			

Long memory effects

Hölder description, $\gamma = 0.1$

Figure: Moving multifractal spectrum for finite signals with long memory

G. Pamuła, D. Grech

FENS2010

Fractality & Multifractality	Hurst vs Hölder	FFM	Multifractal noise	Conclusions
	<i>cc</i>			

Long memory effects

Hölder description, $\gamma = 0.5$

Figure: Moving multifractal spectrum for finite signals with long memory

G. Pamuła, D. Grech

FENS2010

Fractality & Multifractality	Hurst vs Hölder	FFM	Multifractal noise	Conclusions
	ffecte			

Hölder description, $\gamma = 0.9$

Figure: Moving multifractal spectrum for finite signals with long memory

FENS2010

Fractality & Multifractality	Hurst vs Hölder	FFM	Multifractal noise	Conclusions
Long momony o	ffocto			
Long memory e	nects			

Hölder description, $L = 2^{12} = 4096$

G. Pamuła, D. Grech

FENS2010

Fractality & Multifractality	Hurst vs Hölder	FFM	Multifractal noise	Conclusions
	~~			
Long memory e	ffects			

Hölder description, $L = 2^{16} = 65536$

Fractality & Multifractality	Hurst vs Hölder	FFM	Multifractal noise	Conclusions
1	сс .			

Long memory effects Hölder description, $L = 2^{20} = 1048576$

Fractality & Multifractality	Hurst vs Hölder	FFM	Multifractal noise	Conclusions

Long memory effects Hurst description, $L = 2^{20} = 1048576$

Figure: The edge values of generalized Hurst exponents for long memory correlated monofractal signal

G. Pamuła, D. Grech

Long memory effects Hurst description

Figure: The spread of generalized Hurst exponent for fully correlated time series of various lengths

G. Pamuła, D. Grech

Multifractal Background of Monofractal Finite Signals with Long Memory

FENS2010

FFM

Multifractal effects in monofractal signals

joined dependence on L and γ

boundary conditions:

$$\Delta h(\gamma, L) = A(L)\gamma + B(L)$$

$$\Delta h(0, L) \equiv \Delta h_0 = 0.453L^{-0.124}$$

$$\Delta h(1, L) \equiv \Delta h_{sh} = 0.678L^{-0.114}$$

FFM

Multifractal effects in monofractal signals

joined dependence on L and γ

$$\begin{split} & \Delta h(\gamma,L) = A(L)\gamma + B(L) \\ \text{boundary conditions:} \quad & \Delta h(0,L) \equiv \Delta h_0 = 0.453 L^{-0.124} \\ & \Delta h(1,L) \equiv \Delta h_{sh} = 0.678 L^{-0.114} \end{split}$$

95% confidence level

$$\Delta h^{95\%}(\gamma,L) = A^{95\%}(L)\gamma + B^{95\%}(L)$$

boundary conditions: $\Delta h(0,L) \equiv \Delta h_0 = 0.484 L^{-0.120}$

$$\Delta h(1,L) \equiv \Delta h_{sh} = 0.785 L^{-0.128}$$

G. Pamuła, D. Grech

Multifractal noise due to ... effects

G. Pamuła, D. Grech

"Phase diagrams" for multifractality

Typical values for analytical expression for L = 1048576

G. Pamuła, D. Grech

$$\Delta h(\gamma, L) = C_{sh}^{95\%} L^{-\eta_{sh}^{95\%}} \gamma + C_0 L^{-\eta_0^{95\%}} (1-\gamma)$$

$$\begin{split} \Delta h(\gamma, \mathcal{L}) &= C_{sh}^{95\%} \mathcal{L}^{-\eta_{sh}^{95\%}} \gamma + C_0 \mathcal{L}^{-\eta_0^{95\%}} (1-\gamma) \\ & \text{for } 0 \leq \gamma \leq 1 \end{split}$$

$$egin{aligned} &\Delta h(\gamma, \mathcal{L}) = C_{sh}^{95\%} \mathcal{L}^{-\eta_{sh}^{95\%}} \gamma + C_0 \mathcal{L}^{-\eta_0^{95\%}} (1-\gamma) \ & ext{for } 0 \leq \gamma \leq 1 \end{aligned}$$

where

$$C_{sh} = 0.603$$
 $\eta_{sh} = 0.175$
 $C_0 = 0.453$
 $\eta_0 = 0.124$

G. Pamuła, D. Grech

$$egin{aligned} & \Delta h(\gamma, \mathcal{L}) = C_{sh}^{95\%} \mathcal{L}^{-\eta_{sh}^{95\%}} \gamma + C_0 \mathcal{L}^{-\eta_0^{95\%}} (1-\gamma) \ & ext{for } 0 \leq \gamma \leq 1 \end{aligned}$$

where

$$\begin{array}{ll} C_{sh} = 0.603 & \eta_{sh} = 0.175 \\ C_0 = 0.453 & \eta_0 = 0.124 \end{array}$$

95% confidence level

$$\begin{split} C_{sh}^{95\%} &= 0.631 & \eta_{sh}^{95\%} &= 0.171 \\ C_{0}^{95\%} &= 0.484 & \eta_{0}^{95\%} &= 0.120 \end{split}$$

G. Pamuła, D. Grech

,,Phase diagrams" for multifractality

Analytical expression of the $\Delta h(\gamma, L)$ for L = 2000

G. Pamuła, D. Grech

Fractality & Multifractality	Hurst vs Hölder	FFM	Multifractal noise	Conclusions
Conclusions				

Fractality & Multifractality	Hurst vs Hölder	FFM	Multifractal noise	Conclusions
Conclusions				
any finite	TS with or witho	ut long me	emory reveals	

multifractal properties

Fractality & Multifractality	Hurst vs Hölder	FFM	Multifractal noise	Conclusions
C I I				
Conclusions				

- any finite TS with or without long memory reveals multifractal properties
- multifractal spectrum disappearing for $L \to \infty$ and $\gamma \to 1$ (mutifractal background noise MBN) can be analytically described with the help of numerical simulation of monofractal long-correlated signals

Fractality & Multifractality	Hurst vs Hölder	FFM	Multifractal noise	Conclusions
Conclusions				

- any finite TS with or without long memory reveals multifractal properties
- multifractal spectrum disappearing for $L \to \infty$ and $\gamma \to 1$ (mutifractal background noise – MBN) can be analytically described with the help of numerical simulation of monofractal long-correlated signals
- Generalized Hurst approach offers much better fidelity to find MBN than Hölder apprach $\left(\frac{\Delta h(\gamma)}{\Delta \alpha(\gamma)} \sim 5\right)$

Fractality & Multifractality	Hurst vs Hölder	FFM	Multifractal noise	Conclusions
Conclusions				

- any finite TS with or without long memory reveals multifractal properties
- multifractal spectrum disappearing for $L \to \infty$ and $\gamma \to 1$ (mutifractal background noise – MBN) can be analytically described with the help of numerical simulation of monofractal long-correlated signals
- Generalized Hurst approach offers much better fidelity to find MBN than Hölder apprach $\left(\frac{\Delta h(\gamma)}{\Delta \alpha(\gamma)} \sim 5\right)$
- MBN significantly affects multifractal spectrum (e.g.more than 50% of multifractality in finance comes from MBN)

Fractality & Multifractality	Hurst vs Hölder	FFM	Multifractal noise	Conclusions
Conclusions				

- any finite TS with or without long memory reveals multifractal properties
- multifractal spectrum disappearing for $L \to \infty$ and $\gamma \to 1$ (mutifractal background noise – MBN) can be analytically described with the help of numerical simulation of monofractal long-correlated signals
- Generalized Hurst approach offers much better fidelity to find MBN than Hölder apprach $\left(\frac{\Delta h(\gamma)}{\Delta \alpha(\gamma)} \sim 5\right)$
- MBN significantly affects multifractal spectrum (e.g.more than 50% of multifractality in finance comes from MBN)
- one should subtract MBN in any multifractal analysis to deal with 'true multifractality' (differences in power-law scaling properties not depending on the data length and the memory magnitude (γ exponent) in TS)