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Factors affecting TFP formation in manufacturing in Poland.
Application of a dynamic panel model

1. Introduction
Total factor productivity (TFP) is defined as a product that can be created using unit inputs of the production factors. Its growth can be used to assess changes in the effectiveness of the production process induced by technological progress. The values of the variable are not observable and one way of seeking them is the Solow’s production function.

This paper primarily aims to estimate TFP values in the Polish sectors covered by section D „manufacturing” and analyse factors that form this variable. The analytical tools used in the investigation were panel data models: a groupwise heteroskedasticity model and a dynamic model.

2. Methodology
Panel data models are estimated using a special type of cross-section-time data where the number of observed objects N exceeds, sometimes considerably, the number of points in time T. A distinctive feature of the models’ structure is that they distinguish a constant-in-time and object-specific group effects. A dynamic panel data model has the form:
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for i = 1,….,N,  t = 1,….,T. The group effects αi can be treated as random (then they are part of the error term) or fixed (then they become an intercept)
. Whether or not αi are random, the lagged explained variable is correlated with the group effects (constant in time). Therefore, the estimation methods applied to static panel data models are unsuitable for model (1), as their estimators would be inconsistent and biased. The literature of the subject proposes alternative methods for estimating the dynamic panel data models. An overview of the methods can be found, for instance, in Baltagi (2008) and Hsiao (2003). The proposed solutions take advantage of the Method of Instrumental Variables, the Maximum Likelihood Method or the Generalized Method of Moments (the GMM). One of GMM advantages is the possibility of making alternative assumptions about the correlation between the explanatory variables (all or some of elements of vector xit of model (1)) and the random term εit. Variables xit can be treated as:

· endogenous, i.e. xit are correlated with the current value of εit and the lagged values of εi,t-s, but uncorrelated with the future values of εi,t+s,

· predetermined (weakly exogenous), then xit are uncorrelated with the current value of εit, but correlated with the lagged values of εi,t-s,
· strictly exogenous, i.e. xit are uncorrelated with the current value of εit, the lagged values of εi,t-s, and the future values of εi,t+s.

To estimate a TFP formation model as presented in this paper two methods were applied, which seem to be the most popular today: the Arellano-Bond first-differenced GMM (FDGMM) (1991) and the Blundell-Bond system GMM (SGMM) (1998). The essential characteristics of the two methods are presented below.

The use of the FDGMM has to be preceded by assumption of non-autocorrelation of the error term εit in equation (1). The group effects αi are removed by calculating first differences of model (1). In the new model having the form:
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the explanatory variables are replaced with the appropriate instruments, i.e. the lagged values of the predetermined and endogenous variables, as well as the first differences of the exogenous variables. Arellano and Bond (1991) proposed one-step and two-step estimators obtained from the GMM using the above instruments, and called it first–differenced GMM (FDGMM). They also developed a robust variance estimator for the one-step method
. 

The FDGMM estimators can be heavily biased when the lagged levels of the variables are only weakly correlated with subsequent first differences, so that the instruments available for the first differenced equations are weak. The situation may happen, when the time dimension is short, when autoregressive parameter approaches 1, or when the ratio of the variance of the group effects (αit) to the variance of the transient shocks (εit) is too large. In these cases, the Blundell and Bond system GMM (SGMM) estimator (1998) offers better results. Basically, the SGMM concept consists in estimating a system of equations (2) and (1), that is first differences and levels of the same model. Regarding the  first-differences equations, we apply the same procedure as in the case of the FDGMM. In the level equations, the instruments for the predetermined and endogenous explanatory variables are lagged first differences of the appropriate variables. The instruments are valid assuming that εit does not show autocorrelation and that the initial conditions of the form: E(αi Δyi2) = 0 for i = 1,...,N are true.

The quality of an FDGMM or SGMM-estimated model can be evaluated using an Arellano and Bond test for autocorrelation, or a Sargan test (see Arellano, Bond (1991)). The empirical section of this paper uses only the first test, because we calculate the robust variance estimators. In that case, the empirical distribution of the Sargan test statistics is not known. The null hypothesis of the Arellano-Bond test says, that there is no second order serial correlation for the disturbances of the first-difference model (2)
. If the model had autocorrelation of order higher than 1, this would mean that the moment conditions are not true, and the instruments used in GMM-based estimation are not valid.

An additional method for verifying whether parameter estimates obtained from the FDGMM and the SGMM are not biased is setting the estimates against those found by means of the within-group estimator (WG) and the OLS estimator of a pooled model
. Nickell (1981) demonstrated that for the given T the WG estimator of the autoregressive parameter γ is biased downward, while the OLS estimator is biased upward (see Hsiao (2003)). The value of a consistent estimator of the parameter γ should therefore appear between the values of these two estimators. 

3. Estimation of TFP based on a productivity model
It has already been mentioned in the introduction that total factor productivity is an unobservable variable. One way of estimating TFP is using the Solow’s production model. This investigation made use of a method proposed by Tokarski (2008), who applied it when seeking TFP values for the voivodeships. The first step to determine TFP values for particular sectors is to use the relationship:
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where: Y – value of production sold in millions of zlotys
, L – labour input (thousands of employees), K – inputs of physical capital (in terms of gross value of fixed assets, millions of zlotys), Aegt>0 – TFP, g – the rate of Hicks technological progress, α – the elasticity of the variable Y with respect to the variable K. The values of the variables are observed for the i-th sector (i=15,…,37) in the year t (t=1,…,9). The statistical data used in the investigation were derived from the 1998-2007 Statistical Yearbooks of Industry. They describe 22 sectors in section D (manufacturing) numbered in the Polish Classification of Activities (PKD) from 15 to 37.

The relationship (3) follows from taking logarithms from both sides of the labour productivity function derived from the Cobb-Douglas production function. According to the relationship, the productivity Yit/Lit depends on the capital-labour ratio Kit/Lit and TFP, with TFP (equal to Aegt) being the same across all sectors and years. Because this assumption is difficult to accept, dummy variables were added to model (3) for each sector (a so-called constant diversification procedure
). Ultimately, the model used in the first step of estimation sectoral TFP values was of the form:
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where di is a dummy variable taking the value of 1 for the i-th sector.

Model (4) parameters were estimated using the Generalized Least Squares Method (GLS), because the considerable variations between sectors’ productivity and capital-labour ratios suggested the occurrence of groupwise heteroskedasticity. Thus obtained results, presented in table 1, seem to be satisfactory. The estimated rate of Hicks technological progress is ca. 4%, and the elasticity of labour productivity with respect to the capital-labour ratio is 0.26. Besides, all the variables are statistically significant, and the very high fit of the model as measured by the determination coefficient allows concluding that the TFP generated by model (4) will be reliable.



[Table 1 about here]

Taking advantage of model (4) estimates, the TFP values in the i-th sector and in the year t were estimated using the formula:
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where the exponent in the denominator is an estimate of the parameter α in model (4).
Graph 1 shows TFP differences between the sectors. The average TFP values it illustrates span the years 1998-2007. Because TFP values are abstract ones, the average TFP for sector 23 „manufacture of coke and refined petroleum products”, where the TFP value is the highest, was assumed to be 100.


[Graph 1 about here]

Graph 1 shows that high TFP values can be found in sectors 30 (manufacture of office machinery and computers), 32 (manufacture of radio, television and communication equipment and apparatus), 34 (manufacture of motor vehicles, trailers and semi-trailers), and 16 (manufacture of tobacco products). On the other hand, very low TFP values were found in sectors 18 (manufacture of wearing apparel and articles of fur), 19 (tanning and dressing of leather manufacture of leather products), 17 (textiles). 

In order to find out whether the sectoral values of TFP converge, a correlation coefficient between the annual rate of TFP growth and lagged TFP values in the sectors was calculated. The obtained value was -0.0519. The negative sign may suggest the existence of a convergence trend, that is diminishing differences between TFP in the sectors. However, such a low absolute value of the coefficient makes it impossible to state explicitly that the sectoral TFP converged in the sample period.

4. The model of TFP formation
TFP values determined, an attempt was made to construct and estimate an econometric model describing the evolution of this variable in the sectors. Because some data were unavailable, such as data on R&D activity (i.e. on expenditures and employment in sectors 16, 18, 19, 21, 37) and import and export data for all the sectors between 1998 and 1999, the decision was made to shorten the span of the sample. The formation of TFP was analysed using data for 18 sectors (i=15, 17, 20, 22,…, 36) in the years 2000–2007.
The explained variable in the estimated models was TFP as given by formula (5). Based on the theoretical and empirical studies known from the world literature
, the factors potentially affecting the level of TFP were singled out, that is human capital, physical capital, R&D expenditures, and transfer of technology accompanying international trade. A dozen or so models were estimated, having the following, alternative measures of the above factors as the explanatory variables:

· for human capital:

hk – a ratio of the number of non-manual employees to the total number of employees,

zbrlp – a ratio of the number of R&D employees to the total number of employees;

· for physical capital:

stbh – a gross value of fixed assets per hour worked (zlotys/hour);

· for the effects of technology transfer:

imps – a ratio of import value to the value of production sold,

ekps – a ratio of export value to the value of production sold;

· for R&D effects:

brinw – a ratio of R&D expenditures to investment expenditures.

The above variables were introduced to the model either as current values or values lagged by one or two periods. Additionally, it became necessary to introduce the dummy variables that for successive sample years were given the symbols r00, r01,…, r07. The final form of the model having the best material-statistical properties is as follows:
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Model (6) was estimated by the FDGMM and the SGMM, while making alternative assumptions about the endogeneity of the explanatory variables (of all or selected variables). After many tests, it was finally accepted that the non-exogenous variables were stbh and hk. Table 2 presents the selected estimates for model (6). The symbols „endo”, „pre” and „egzo” added to the names SGMM and FDGMM indicated how the variables stbh and hk were treated: as endogenous, weakly exogenous or strictly exogenous. The presented results were obtained using one-step estimators. The effects of the two-stage methods were not satisfactory. The symbol WG marks the within-group estimator.



[Table 2 about here]

The Arellano-Bond test for autocorrelation the results of which are presented in table 2 explicitly indicates that the instruments used in estimation procedure are valid. This statement concerns all GMM variants presented in the columns 1-4 in the table above. The estimates of the autoregressive parameter in the columns 1-3 appear between the WG estimate (0.505) and the OLS estimate (0.9342), which suggests consistency of the SGMM estimators. The FDGMM estimator is biased downward, because the estimate 
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 does not exceed that obtained using the WG estimator.

A comparison of the results provided in the columns 1-4 clearly shows that the best method for estimating model (6) is the SGMM assuming endogeneity of the variables stbh and hk (column 1). Expanding human capital contributes to TFP growth the most strongly (elasticity of 0.22%). The effect of technology transfer related to international trade on TFP is also substantial. The elasticity of the variable imps with respect to TFP is 0.12%. The impacts of physical capital (elasticity of 0.05%) and R&D expenditures (elasticity of 0.03%) are somewhat weaker. The effects of technology transfer and R&D expenditures are lagged, one year for the variable imps, and even two years for brinw. The long-term multipliers are 0.6824 for hk, 0.3554 for imps, 0.1618 for stbh and 0.0940 for brinw. They show how TFP changes when all current and lagged values of the explanatory variable increase by their unit. 

The high estimate (0.673) of the autoregressive parameter in model (6) points to TFP stability in the sectors. This conclusion is consistent with the earlier opinion, which was formulated after analysing the coefficient of correlation between the annual rate of TFP growth and the lagged value of the variable. Therefore, it has to be accepted that TFP values are characterised by strong, sector-specific differences, without any noticeable convergence trend.

5. Final comments
In the presented investigation, estimation of TFP values in the sectors covered by section D “manufacturing” was followed by identification of factors influencing the formation of TFP. The applied analytical tools included a groupwise heteroskedasticity model and a dynamic panel data model that were estimated with panel data.

The obtained results revealed considerable differences in TFP between the sectors, but a trend toward their alignment was not found. It was demonstrated that physical capital, human capital, technology transfer and R&D expenditures significantly shape the course of TFP.
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Table 1.
Estimates for the labour productivity model (4)

	Variable
	Parameter estimate
	Significance of variable (p-value)
	Variable
	Parameter estimate
	Significance of variable (p-value)

	ln(K / L)
	0.26321
	0.000
	d25
	3.62051
	0.000

	t
	0.04899
	0.000
	d26
	3.38837
	0.000

	d15
	3.72854
	0.000
	d27
	3.77649
	0.000

	d16
	4.14847
	0.000
	d29
	3.38387
	0.000

	d17
	3.12663
	0.000
	d28
	3.5099
	0.000

	d18
	2.6696
	0.000
	d30
	4.316
	0.000

	d19
	2.94711
	0.000
	d31
	3.63075
	0.000

	d20
	3.32181
	0.000
	d32
	4.25593
	0.000

	d21
	3.78712
	0.000
	d33
	3.39338
	0.000

	d22
	3.67515
	0.000
	d34
	4.19379
	0.000

	d23
	4.60832
	0.000
	d35
	3.39602
	0.000

	d24
	3.82393
	0.000
	d36
	3.36845
	0.000

	
	
	 
	d37
	3.55972
	0.000

	R2 = 0.9744


Source: calculated by the author.

Graph 1. Sectoral differences in TFP, years 1998-2007 (sector 23 = 100)
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Source: calculated by the author.
Table 2.
Estimation results of the TFP regressions
	Explanatory variable/

statistical test
	Estimation method

	
	SGMM endo
	SGMM pre
	SGMM egzo
	FDGMM endo
	WG
	KMNK

	
	1
	2
	3
	4
	5
	6

	ln(TFPi.t-1)
	0.6725***

(0.0849)
	0.6699***

(0.0685)
	0.7101***

(0.1030)
	0.4749***

(0.1046)
	0.5045***

(0.0839)
	0.9342***

(0.0351)

	ln(hkit)
	0.2235***

(0.1052)
	0.1926***

(0.0744)
	0.0705

(0.1494)
	0.3459**

(0.2163)
	0.3363***

(0.1609)
	0.0112

(0.0293)

	ln(brinwi.t-2)
	0.0308***

(0.0106)
	0.0101

(0.0249)
	0.0208

(0.0275)
	0.0314

(0.0271)
	0.02788

(0.0181)
	0.0104

(0.0085)

	ln(stbhit)
	0.0530**

(0.0297)
	0.0372

(0.0438)
	0.0131

(0.0506)
	-0.0119

(0.0648)
	-0.0122

(0.0565)
	0.0377**

(0.0213)

	ln(impsi.t-1)
	0.1164***

(0.0462)
	0.0675**

(0.0445)
	0.1135

(0.0798)
	0.0319

(0.0337)
	0.0156

(0.0739)
	0.0011

(0.0201)

	r02
	-0.1366***

(0.0361)
	-0.1397***

(0.0298)
	-0.1413***

(0.0331)
	-0.2102***

(0.0378)
	-0.2036***

(0.0328)
	-0.0914***

(0.0264)

	r03
	-0.0889***

(0.0253)
	-0.1025***

(0.0262)
	-0.0806***

(0.0336)
	-0.1367***

(0.0310)
	-0.1299***

(0.0299)
	-0.0333

(0.0262)

	r05
	-0.0609**

(0.0327)
	-0.0814***

(0.0285)
	-0.0855***

(0.0297)
	-0.0675***

(0.0225)
	-0.0676***

(0.0231)
	-0.0710***

(0.0254)

	cons
	1.8583***

(0.5178)
	1.7213***

(0.3641)
	1.5738***

(0.5416)
	2.9839***

(0.4545)
	2.8153***

(0.5085)
	0.2768**

(0.1535)

	m1[p-value]
	-2.247

[0.025]
	-2.503

[0.012]
	-2.093

[0.036]
	-2.497 

 [0.013]
	(
	(

	m2[p-value]
	-0.889

[0.374]  
	-0.138

[0.890]
	-0.143

[0.886]
	0.664 

 [0.506]
	(
	(

	R2
	(
	(
	(
	(
	0.824
	0.958


*** at a parameter estimate means that p-value  for the t-Student is less than 0,05 and ** stands for p(0.1; other variables cannot be accepted as significant. The calculations of the standard errors of parameters were based on robust estimators of the variance-covariance matrix of the error term;

m1 and m2 stand for the empirical values of the Arellano-Bond test for autocorrelation, respectively AR(1) and AR(2); p-values for H0 (first (second) order autocorrelation does not occur) are given in the square brackets:.

Source: calculated by the author.
� Research project N111 0938 33 financed from the funds allocated to scientific activities in the years 2007-2009.


� Additionally, a third component constant with respect to objects can be distinguished, known as the time effect.


� A standard variance estimator for the two-stage method is strongly biased downward, as shown by Arellano and Bond (1991). Windmeijer (2005) proposed a robust estimator for the two-step method.


� The occurrence of first-order autocorrelation in model (2) is expected, because if εit are independent, then its  first differences are correlated of order one.


� A within-group estimator is used to estimate static panel data models, where the group effects αi are fixed (the FEM models). A pooled model is one estimated using panel data, but without distinguishing the group effects or the time effects, and assuming that the variance-covariance matrix of the error term is spherical.


� A model with Y being gross value added in millions of zlotys was also estimated, but the results were much worse, so they are not presented here.


� See Pindyck, Rubinfeld (1991).


� See Cameron (2006), Griffith, Redding, Van Reen (2003), Coe, Helpman (1995), Acharya, Keller (2007)
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