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Introduction
Most banks calculate daily 99% confidence interval VaR figures. To do this they look at a discrete distribution of simulated revenues. VaR at the 99% confidence level is based on the 14th worst loss across 1305 observations from 5yr historical data. It relies on a single historic observation date and therefore can exhibit high variability. This both reduces its efficiency and provides little information about the distribution of losses around the tail. 

The process of risk management requires not only estimating the VaR but also examining the sensitivity of its positions comprising the portfolio. Taking a single order statistic such as the 14th worse loss may be inadequate for this purpose. Computing a weighted average of the dates in the tail will produce more robust risk analysis. The use of quantile estimators ensures a more stable and accurate measure of tail losses and regulatory capital requirement. 

In this paper we discuss the use of Expected Shortfall (ES) under certain distribution assumptions and the Harrell-David (HD) estimator as alternative approaches to estimating VaR and examine their reliability for risk management purposes. 

VaR as risk measure

Current regulations from finance (Basle II) or insurance (Solvency II) business formulates risk and capital requirements in terms of quantile based measures (see, e.g., Dowd and Blake 2006). The upper quantile of the loss distribution is called Value-at-Risk (VaR). In other words, VaR is defined as the maximum potential loss in value of a portfolio with a given probability over a certain horizon.

More formally, given a random variable  Y  and a probability level 
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, where “minus one” denotes the generalized inverse of the cumulative distribution function F. Recall that in the Gaussian model 
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For a confidence level 
[image: image6.wmf])

1

,

0

(

Î

a

 the Value-at-Risk at level 
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 for log-returns X is defined as 
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As mentioned in [Artzner et al. 1999], VaR suffers major drawback not being coherent. In response to a coherent equivalent to VaR, a series of VaR-related risk measures were proposed. Among them the so-called Expected Shortfall as an alternative to VaR is mentioned in [Rockafeller and Uryasev, 2000].

The Expected Shortfall [Acherbi and Tasche, 2002] at level 
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It equals the conditional expected loss given that it exceeds 
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, and is also called as Tail Value-at-Risk in [Artzner et al.1999], Conditional Tail Expectation in [Wirch and Hardy, 1999], or conditional Value-at-Risk in [Rockafeller and Uryasev, 2000]. An alternative definition of ES is the mean of the tail distribution of the VaR losses.

Estimating VaR using ES
A different way to estimate the 99% percentile of the distribution is to use an Expected Shortfall approach. As we are not looking at 99% ES, but estimating the VaR percentile using ES, we need to determine the confidence interval for which ES is equivalent to a 99% VaR. This approach has no closed solution and the equivalent confidence interval is dependent on the distribution assumptions of the underlying losses. 

Assuming the losses are Normally Distributed
Let: X ~ N(0,1) and  recall the corresponding cumulative distribution function, and density, respectively:
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In this case the Expected Shortfall obtains the following form:
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The problem is to find a probability p for which
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. Since this problem has no closed solution, we computed a numerical solution. The numerical solution p for a N(0,1) distribution is then applied to our discrete distribution, in order to find the number of worst observation we need to use for the 
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calculation. The numerical solution is
[image: image18.wmf] p = 97.42%. 

If the empirical distribution of our losses has fatter tails then normal distribution, then the actually confidence interval used for using ES as an estimate for VaR will be lower then the one used for normal distribution. Hence the ES using the ‘actual’ confidence interval is lower then when using the Gaussian distribution and hence empirical VaR(99%) is lower then ES(97.42%). Most studies show that financial time series exhibit fat tail, hence using the normal distribution confidence interval is conservative whenever we have fat tail. 
Examples of other distributions: t-student distribution
Under the assumption that the losses follow a t-student distribution, we have that the equivalent confidence interval x, (ES(x%) = VaR(99%)) is lower than 97.42%, confidence interval for normal distribution. The confidence level x converges towards 97.42% as the degrees of freedom increase, as expected, because the t-student distribution converges in distribution to Gaussian distribution as the degrees of freedom approach infinity. 
Even though, the family of t-student distributions has fatter tails than normal distribution, it would be unrealistic to assume that the loss distribution follows a t-student distribution. It has been checked that empirical loss distribution varies significantly depending on the positions in the portfolio and hence one cannot make reasonable assumptions that it follows a certain t-student distribution with a specific degree of freedom.
Table 1. Confidence intervals vs. degrees of freedom of t-student distributions

	Degrees of freedom
	Confidence interval X such that
ES(X%) = VaR(99%)

	1.1
	86.1%

	1.5
	94.2%

	2
	96.0%

	3
	96.7%

	4
	96.9%

	5
	97.0%

	8
	97.2%

	15
	97.3%

	50
	97.4%

	200
	97.4%

	1000
	97.4%


Estimating VaR using the HD estimator 

The HD quantile estimator for VaR was proposed by [Harrell and Davis, 1982]. It makes no assumptions whatsoever about the underlying loss distribution (just the usual that the observations are i.i.d). It is in general close to an ES measure, just that the weights are not a step function, but given by a beta function. The HD estimator is in essence the bootstrap estimator of the expected value of the (n+1)p-th order statistic, with p - the quantile and n the sample size. It is based on the fact that as the sample size increases, the expected value of the (n+1)p-th order statistic converges to p quantile. Another advantage of using the HD estimator is that it gives us confidence intervals regarding how good the VaR estimator is.
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where 
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  is the incomplete beta function.
Figure 1 bellow plots the HD weights for estimating the 0.99 quantile from a sample of 1305 observations from 5yr historical data of the log-returns of some selected shares during the period from 03.05. 2004 till 30.04.2009. Note that unlike the 14th worse loss estimator, which places the total weight on the 1292th order statistic in this case, the HD estimator distributes the weights among a range of order statistics. It is worth noting also that the weights depend only on the sample size and on quantile. In [Zielinski, 2008] another nonparametric method for estimating VaR has been porposed.
Figure1.The weights of the HD estimator for p=0.99 and N=1305
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Table 2. VaR(99%) estimates by ES(94.7%), 14th worse loss and HD 
	ES (94.7%)
	-5,17%
	-5,03%
	-5,91%
	-4,42%
	-5,47%
	-2,50%
	-4,57%
	-4,36%
	-5,34%
	-5,93%
	-4,75%
	-5,00%
	-3,20%

	14th worse loss
	-5,12%
	-5,37%
	-5,35%
	-4,31%
	-5,19%
	-2,36%
	-4,72%
	-3,73%
	-4,89%
	-5,61%
	-4,58%
	-4,75%
	-3,32%

	HD Estimate
	-5,14%
	-5,34%
	-5,75%
	-4,45%
	-5,39%
	-2,43%
	-4,74%
	-3,96%
	-5,16%
	-6,06%
	-4,76%
	-4,93%
	-3,35%

	Ordered Combined PnLs for respective cob
	AEX
	ATG
	ATX
	BFX
	BGLI
	BHSE
	BMV
	BSI
	BUX
	BVSP
	CAC
	CCSI
	CFG25


The following figure represents graphically the table 2. Here ETL stands for Expected Tail Loss, another term for ES.
Figure 2. Graphical representation of the Table 2
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� Notation: Let N  be the total number of observations in our historical window.


Number of worst historical observations to be used for ES calculation equals � EMBED Equation.3  ���.
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