Application of the wavelet transform to the stock exchange shares analysis
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Abstract: The paper presents the wavelet transform method to the analysis of the stock exchange price values patterns. The technical analysis covers the set of the methods implemented to find the regularities in the waveform, searching for the typical formations. The characteristics of the patterns generated by the stock exchange are presented. The wavelet transform is then explained and its application for denoising of the waveform described. The method is applied for the trend detection in the exemplary pattern of the shares price values time series. Finally, conclusions and future prospects are presented. 
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1. Introduction

The stock exchange is one of the most critical mechanisms of the modern economy. In the era of the global economy this institution allows the large companies to obtain the funds required for their development, strongly influencing the economical situation of the local markets. Therefore its analysis is of growing importance and brings knowledge not only about the particular companies, but also the overall economy condition. The detailed information about the characteristics of the exchange is important in the countries with young free markets, which are not as advanced as in the western countries and are strongly susceptible to the political events as well as the strong players, which influence the exchange in a not always legal way. A good example of such a market is Poland, with relatively short history of the stock exchange. The analysis is important for the simple share owners, but mostly for the professional analysts, eager to predict the future of the market.
Among multiple approaches to the problem, the fundamental and technical analyses are the most popular methods, with a long record of the confirmed applications. The technical analysis is aimed at prediction of the future behavior of the market. This task is difficult due to the stochastic nature of the predicted signals. Moreover, the information obtained from the stock exchange is often affected by the quick and short term changes in the prices of the particular company shares. These may be interpreted as noise, because of their short duration and limited influence on the major changes, which are called trends. Because records of the share prices form the time series, they may be treated as the waveforms, with low and high frequency components. 
One of the emerging tendencies are the automated processing methods, which facilitate decision making process (such as the decision about the purchase or sale of the shares), or prepare the data for the human experts [1]. The paper presents the analysis of the wavelet transform application to the decomposition of the company share prices time series, which can be further subjected to the technical analysis in order to find similarities in the data, or to predict the future behavior of the process. In section 2 basics of the technical analysis are presented. Section 3 contains the description of the wavelet transform technique. In section 4 the application of the transform to the decomposition of the time series into low and high frequency components is described. It is used to facilitate the long term changes analysis, often referred to as the trend analysis. Conclusions and future prospects are in section 5.
2. The main tools of the technical analysis
This section contains the information about the basic tools of the stock market analysis, which are further exploited using the wavelet transform method.
The technical analysis is one of the oldest approaches to analyze the signals produced by the stock exchange. Developed in the United States [2], it is currently widely used by human experts. The input parameters for the analysis are mainly records of the shares prices. Although it is used to monitor securities and derivative instruments, the former belong to the more dynamic market and have a greater impact on the national economy. Therefore the paper focuses only on them. 
The basic tools in the technical analysis are charts of the share prices. As there are multiple types of the prices present (opening, closing, minimal and maximal during the day), there also various diagrams presenting them. The simplest one is the linear diagram, containing changes only in one type of the prices, collected each working day. Other charts, such as the candlestick or bar charts, contain more information about prices, but are unsuitable for the automated processing. Therefore the paper focuses on the linear charts.
The main task of the technical analysis is to provide the information about the predicted behavior of the share prices. To do that, the diagrams are analyzed in searching for the formations, i.e. particular shapes inside the time series. The most important formations are trends (rising – when prices steadily increase, declining – when prices decrease, and lateral, when the long term price remains unchanged). The trends show the constant tendency, influencing decisions of the investors and facilitate the strategy development. To predict the trend in change, head-and-shoulders formation is identified, consisting of the top-of-the-mountain-like set of the extreme price values. The latter are often difficult to find, as their shape in the real chart may differ greatly from the theoretical diagrams [2]. Noise is one of the important factor making the procedure more difficult, therefore it should be eliminated.
3. Wavelet transform application to the waveform decomposition
One of the most important operations performed on the company’s simple diagram of prices (before it can be further processed), is de-noising, i.e. elimination of the irrelevant high frequency waveform components. This operation is well established in the technical domains operating with the waveforms, such as analog electronics [3,4] or biomedical engineering [5]. According to the Fourier’s theorems, each signal can be represented in the time and frequency domains, and both are related. The high frequency components represent the fast change in the time domain. On the other hand, the low frequency components are more important when one is interested in the long-term behavior of the signal. In multiple applications, the former should be separated from the latter, as only one aspect is studied. The importance of both components depends on the particular application. In the financial analysis both components can be used. In the trend detection and identification only low frequency components are important, as they show relatively stable tendencies in the prices changes [6]. For the analysis of the quick and abrupt fluctuations, high frequency components are more useful [7]. The technical analysis of the stock exchange proves that the players operating in both aspects can effectively earn money, therefore the de-noising operation is useful and must be often implemented.
Waveforms originating from the stock exchanges in the whole world are similar in form. They are non-stationary patterns consisting of multiple high and low frequency components, which make them difficult to analyze for the traditional time-frequency transformations, such as Fourier and Gabor transforms. The former (called Discrete Fourier Transform or DFT), gives a detailed information about the layout of the particular frequency components in the spectrum. Unfortunately, no information about the time of the particular events in the waveform is given, so this approach is effective mainly to the stationary signals analysis. The latter (called Short Time Fourier Transform or STFT) is the method of calculating the frequency coefficients not for the whole signal, but for its small fragments. Assembling these fragments into one scheme gives both information about the frequency components and time of their occurrence [8]. However, as the fragments of the signal must be of constant length (called a length of the time window), the accuracy of the time domain representation is finite and often unsatisfactory. Therefore a new method was introduced to the effective analysis of the noisy non-stationary signals analysis. It is called a wavelet transform [9]. 
It is a method of representing the analyzed signal using so-called wavelets. The latter are the sinusoidal-like patterns with zero mean, quickly evanescent to zero. The generic mathematical form of the wavelet is represented by (1):

[image: image1.wmf]dt

t

t

f

b

a

w

ab

ò

¥

¥

-

×

=

)

(

)

(

)

,

(

y

 




    (1)
where w(a,b) is the wavelet coefficient, f(t) is the original signal and (ab(t) is the wavelet function, defined by (2):
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where a and b are the integers of any value. The first parameter is a scaling parameter and is responsible for the wavelet duration. The second parameter is a shifting parameter, responsible for the dislocation of the function in the time domain. The wavelet transformation is performed using the translation and dilation of the base function. Such operations may be interpreted as the passband filters bank located at the different frequencies and having various bandwidth. The wavelet functions assure high accuracy of the f(t) signal representation in both time and frequency domains. 
The representation of the f(t) signal using the wavelet coefficients is performed as in Fig. 1.
procedure wavelet_representation
foreach w(a,b)

select(a)
begin
until f(t) is fully covered by the w(a,b)

begin



correlation_calc(f(t), (ab(t))



select(b)

end

end

Fig. 1. Procedure of the original signal representation using wavelet transform
Operations select(a) and select(b) are determination of the time duration of the wavelet function and its location in the time axis. Operation correlation_calc is calculating the correlation between the original signal and the wavelet function. The procedure is composed of defining the length of the base wavelet function (“squeezing” or “stretching”) and subsequently moving the function over the original signal and performing the correlation calculation, until the whole signal was covered by the wavelet function. The obtained wavelet coefficients are a measure of the similarity between the particular, modified, wavelet function and the fragment of the original signal. It is also possible to obtain the original signal from the coefficients (using the reverse transformation). 
Depending on the number of the wavelet coefficients that are selected for modifications of the base wavelet function can be infinite (then the Continuous Wavelet Transform ) or finite (Discrete Wavelet Transform). The latter assumes that the selected coefficients are powers of two. In the practical applications only DWT is used, and so is in the following paper. 
Separating the low and high frequency components using the wavelet transform is an iterative process. At each stage the input waveform (initially, f(t)) is decomposed into two parts, called approximations A(t) and details D(t). The former are the waveforms containing the lower frequency components of the original signal. The latter are the signals with the high frequency components, which were separated from the signal. To the next iteration in DWT only the approximations are passed [10]. The decomposition on the wavelet coefficients in n iterations is represented by (3):
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where c  is the low frequency component, d is the high frequency component, n and k = 1,…,n are scaling coefficients and m is the phase coefficient. The scaling Φnm(t) and wavelet ξkm(t) functions are responsible for the low and high frequency filtering, respectively. As not each wavelet has the scaling function, not all families are capable of denoising. Similarly, reconstruction of the signal from the coefficients is possible, as in (4).
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The original signal is then a sum of the approximations and details:
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The decomposition scheme is presented in Fig. 2a (the approximations and details at the subsequent levels are visible here). The details of the decomposing the original signal and the subsequent approximations into the wavelet coefficients, from which further approximations and details are obtained, is presented in Fig. 2b and c. The operation consists in calculating the wavelet coefficients from the input waveform (as presented in the algorithm in Fig. 1), and then assembling the high and low frequency waveforms from them. The most important problem is determination of the number of decompositions (iterations of the approximations and details separation). If their number is too great, the important elements of f(t) may be eliminated, making the correct trend analysis impossible. On the other hand, cutting off too small is also unfortunate, as the noise makes the signal processing difficult. Therefore the optimal number of the iterations must be found. It may depend on the type of the wavelet selected, the noise level and the nature of the signal.
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Fig. 2. Wavelet transform decomposition scheme (a), method of representing the signal by the coefficients (b) and reconstructing the signal from the coefficients (c)
As there are multiple wavelet functions possible, on of the important questions is the selection of the best one. Among the most popular families, i.e. Daubechies, biorthogonal, coiflets or symlets one of the functions should be selected and the selection criterion must be obtained. In general, the base wavelet functions differ in the number of the ripples and smoothness. The simpler wavelets, indicated by the lower numbers of indexes are sharper and contain small number of ripples. On the other hand, high order wavelets are smoother and have large number of ripples. The exemplary representatives of the Daubechies family are in Fig. 3. As can be seen, the increasing order of the wavelet is related to the increasing complexity of the function.
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Fig. 3. Examples of the Daubechies family wavelets: db2 (a), db6 (b) and db12 (c)
4. Method implementation

This section briefly introduces the company which share prices history was analyzed, and describes the implementation of the wavelet transform for the waveform decomposition. 

A. Company characteristics
The wavelet transform was applied to analyze the prices pattern of one of the Polish companies present in the stock exchange for relatively long time. The Żywiec Trade Holding Group is a large company specializing in manufacturing and distributing beer, non-alcoholic and alcoholic drinks (water, juices, vodkas, etc.) [10]. The yearly sales are about 3,6 billion PLN, with the sales volume of 10,7 million hectoliters. The company is relatively large in the markets of the Eastern and Central Europe. It possesses multiple agencies in Poland, hiring almost four thousand employees and wide network of the distribution channels [10]. The Żywiec Trade holding is one of the oldest companies present in the stock exchange since the 1991. The opening price at the first day of the shares sales was 8,80 PLN, with the maximum value of 725 PLN in 2008. 
The waveform of the share prices for all the records is presented in Fig. 4. It contains about four thousand samples – daily closing prices. Although the technical analysis uses multiple diagrams, the most basic and therefore the easiest to use with the advanced signal processing methods is the linear diagram. The shape of the waveform is typical for the stock exchange – a non-stationary pattern with both slow and quick changes. The latter make the detection of the formations difficult, especially, when the automated algorithm is to be applied. When high frequency components are eliminated, the trend analysis should be easier. Unfortunately, as the prices pattern is not periodic, the traditional methods of the frequencies separation do not give the satisfactory information about the nature of the pattern. Therefore the procedure in MATLAB computing environment was written to decompose the original signal. The parameters of the procedure are the type of the wavelet and the number of the decompositions. 
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Fig. 4. The Żywiec holding stock exchange prices waveform
B. Experiments

The initial experiment was conducted on the whole waveform. The main groups of real wavelets were used (including Daubechies, symlets, coiflets and biorthogonal). Each of them can be used for the task, but the result of the approximation representation using the particular functions depend on the shape of the wavelet. Also, the number of the required decompositions may depend on the particular wavelet.  The first experiment was the decomposition of the signal into the constituent parts using the described wavelets. Results of the operation (approximations and details at the subsequent levels) are presented in Fig. 5.
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Fig. 5. Results of the signal decomposition using the ‘sym7’ wavelet: approximations (a) and details (b)
The decomposition successfully eliminates the high frequency components from the useful signal, leaving the important elements for the trend analysis. Note that the first four iterations effectively eliminate the noise, however, while in the fifth one, the filter’s cutoff frequency is becoming dangerously low. If the iterative process continues, too much information will be eliminated from the useful signal, making the accurate analysis of the waveform impossible. Therefore the fourth or fifth iteration of the algorithm should be the last one. Otherwise the original signal could be deformed. For all the tested wavelets similar experiment was conducted, revealing that most of the functions assure acceptable decomposition after five iterations, so the optimal number of decompositions depends on the waveform type and shape more than on the wavelet used to analyze it.
Results of the particular tested wavelets applications are similar. Distinguishing between them for such long time series, as presented in Fig. 4, is impossible without the detailed analysis of the compared waveforms. In Fig. 6a and b there are the fragments of the output signals processed by two different wavelets. The shaper and simpler functions are reflected in the signal’s sharper forms, while the higher order wavelets give smoother waveform. The open question is the selection of the most suitable function to represent the useful signal. As there is no a priori information about the “clear” signal, the user’s requirements are the main criterion for the selection. The comparison between the functions can be performed using the residual analysis, i.e. calculating the differences between the subsequent signal samples, as in (6).
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where fres(t) is the residual signal, and fw1(t) and fw2(t) are results of the waveforms processed by two selected samples, while t is the discrete time (referring to the subsequent days where the share prices are collected). By calculating such residua for all pairs of the output waveforms, the information about the differences in the decomposition results can be obtained. This information, supplemented with the analysis of the waveforms, allows to make the decision about the optimal function for the task. Also, the similarities between all pairs of waveforms can be calculated to find the clusters of the similar wavelets that give close results of decomposition. The Euclidean distance can be calculated here, assuming that each waveform is the point in the N-dimensional space, where N is the number of the samples (share prices in the subsequent days). In Fig. 6c the example of the residua signal for the ‘db2’ and ‘sym7’ wavelets is presented. These two decompositions are significantly different, as the first one leaves the sharper edges of the signal, and the second made it smooth. The former may be too difficult for the automatic extreme values extraction, the latter eliminated too many possibly important details from the waveform. Therefore the optimal decomposition requires the waveform in the middle between these two extremes. However, this selection might have to be made manually, based on the experience of the human operator.
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Fig. 6. Comparison of the signal decomposed by the wavelets: ‘db2’ (a), ‘sym7’ (b) and their residual waveform (c)

In the presented experiments the important trait of the waveform should be the smoothness of the signal, as it facilitates semi-automatic detection of the formations used to predict the future behavior of the share prices. The most typical head-and-shoulders identification requires finding the neighboring extreme values (respectively, minimal and maximal in the predefined sequence). Finding them requires the procedure of locating the points in the waveform, where the first derivative is changes the sign. The numerical approximation of the latter is the differential quotient (according to (7)). Unfortunately, such a procedure is difficult with the additive noise, as the number of extreme values found using this method is too large. Therefore one of the possible user criteria of the wavelet selection is the number of the extreme values. For the automatic signal processing the smaller extremes number the better, assuming the important details were not eliminated from the original signal. 
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where dx(t)  is the derivative of the signal x in the discrete timestamp t. The automatic method for the extreme values extraction is presented in Fig. 7. 
procedure find_extremes
input: x

begin

foreach t=1…T-1

begin


dx(t)=x(t+1)-x(t)


if dx(t) ( dx(t+1) < 0


begin



if dx(t) > 0 then add_maximum(t)



else add_minimum(t)


end

end

end

Fig. 7. Method for the extreme values extraction
The procedure is performed for each neighboring samples of the share prices. Depending on the results of the comparison between two subsequent derivatives, the set of the local minima (operation add_maximum(t)) or local maxima (operation add_minimum(t)) is expanded. 
Results of the comparison between the used wavelets and characteristics of the decomposed waveform are in Table 1. The statistical parameters are hardly distinguishable, while the number of the extremes changes significantly. The sharper wavelets (‘db2’, ‘bior1.3’,’’, ‘sym2’) leave multiple sharp details. However, the second wavelet disfigures the original waveform greatly and can’t be used. Two remaining functions give similar results. On the other hand, the rest of the tested wavelets leave the smoother waveform with much smaller number of the extremes. Among them the ‘db6’ wavelet was selected as the one providing the reasonable number of extreme values and being the most similar to the original signal.
Table 1. Comparison between the waveforms decomposed by the particular wavelets
	wavelet name
	Number of extreme values
	Mean value [PLN]
	Variance [PLN2]

	Original signal
	1242
	338,86
	2,484(104

	db2
	177
	338,85
	2,465(104

	db6
	38
	338,87
	2,467(104

	db12
	38
	338,87
	2,467(104

	db16
	37
	338,87
	2,468(104

	bior1.3
	124
	338,87
	2,473(104

	bior3.5
	36
	338,85
	2,466(104

	bior3.9
	38
	338,86
	2,466(104

	bior2.6
	33
	338,86
	2,468(104

	bior6.8
	39
	338,86
	2,468(104

	coif3
	38
	338,86
	2,468(104

	coif5
	35
	338,87
	2,467(104

	sym2
	177
	338,85
	2,465(104

	sym7
	36
	338,86
	2,467(104


Finally, the technical analysis can be performed based on the signal cleared from the unimportant elements. The fully automated procedure for this operation is difficult to obtain, as the duration of the formations should be first determined, which is not clear. However, the cleared waveform with the extreme values indicated, is much easier to analyze manually. The example of the trend detection in the cleared waveform of the Żywiec Trade holding is presented in Fig. 8. 
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Fig. 8. Examples of the head-and-shoulders formation (a) and lateral trend (b) in the cleared waveform

5. Conclusions

Although the wavelet transform is an established method in the signal processing, its possible applications to the financial analysis should be examined in the future. The presented method, although referring to the trends analysis, may be also applied to the noise analysis, where short, abrupt changes give information about the local changes and help investing in the short term. However, some issues should be focused on in the future research:
· selection of the proper wavelet function for the original waveform decomposition. The experiments presented in the paper were conducted only on one the shares records for only one company. Selection of the wavelet according to the waveform shape may help to improve the accuracy of decomposition. Some of the concepts presented in the paper could be implemented here.
· development of the automated decomposition procedure, adjusting the number of the desired iterations, allowing  to separate the high and low frequency components, but preventing the distortion of the useful signals.
· application of the packet wavelet transform, if the information contained in the high frequency components is also of the analyst’s interest. 
Also note, that the presented method was used for the off line analysis. Wavelets can be used in the on-line analysis, giving the information about the important events, according to the past records. 
References:

[1] D. Plikynas, “Portfolio Design And Optimization Using Neural Network Based Multiagent System Of Investing Agents,” Proc. 20th EURO Conference, 2008, May 20-23, Neringa, Lithuania, pp. 137-142.
[2] “An Introduction to Technical Analysis,” Reuters, 1999.
[3] P. Bilski, J. Wojciechowski, and W. Brygilewicz, „Diagnostics of Mechatronic Systems Using  Fuzzy Logic and Wavelet Transform,” Proc. ECCTD’03 Conf., Sept. 1-4, 2003, Kraków, Poland, pp. III-377-380.

[4] K. Kim and A. G. Parlos, “Induction Motor Fault Diagnostis Based on Neuropredictors and Wavelet Signal Processing,” IEEE Trans. Mechatronics, Vol. 7, No. 2, June 2002, 201-218.

[5] A. M. Wink and J. B. T. M. Roerdink, “Enhancing Functional Neuroimages: Wavelet Denoising as an Alternative to Gaussiam Smoothing,” Proc. ICCVG 2002 Conf., Zakopane, Sept. 25-29, 2002, pp. 787-792.
[6] E. Capobianco, “Statistical Analysis of Financial Volatility by Wavelet Shrinkage ,” Methodology and Computing in Applied Probability, Vol. 1, No. 4, Dec, 1999, pp. 423-443.
[7] R. Gencay, F. Selcuk, B. Whitcher, B. J. Whitcher, “An Introduction to Wavelets and Other Filtering Methods in Finance and Economics,” Elsevier Science & Technology Books, Sept. 2001.
[8] Y. Avargel, I. Cohen, “System Identification in the Short-Time Fourier Transform Domain With Crossband Filtering,” IEEE Trans. Audio, Speech, and Language Proc., Vol. 15, Issue 4, May 2007 pp.1305 – 1319.
[9] M. Misiti, Y. Misiti, G. Oppenheim, J.-M. Poggi, “Wavelet Toolbox”, Mathworks, 2001.
[10] http://www.zywiectrade.pl/informacje_handlowe/zywiec_trade/




































_1175778792.unknown

_1177164095.unknown

_1301959961.unknown

_1302010105.unknown

_1177162310.unknown

_1175778363.unknown

_1158268135.unknown

