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Introduction
In this paper we consider two fundamental problems of mathematical economics, which in the mathematical perspective can be seen as instances of an identical problem of multi-dimensional analysis. The point is to find solutions of a system of nonlinear in general equations in 
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 being the number of commodities dealt with by the theory. The equations of the system arise as the Lagrange equations for a suitably formulated extremum problem with constraints (cf. (6) below). Except in a few cases, e.g. when the function is of the Cobb--Douglas or CES type, the equations do not allow a closed form of the solution so a need for determining approximate solutions arises. One of the best known methods of construction of approximate solutions to nonlinear equations is known under the name of ,,Newton's Method" in recognition of its famous ancestor, the method of the tangent devised in 1669 by I. Newton [Walter 1992, vol. I, p. 317].      

In this paper we present results concerning numerical solution of the system for a choice of utility functions with a varied number 
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 of variables (commodities). The algorithm is implemented with use of a program written in the Matlab language. The results demonstrate that the successive approximations obtained from the Newton's Method converge quite rapidly to a solution without regard to the number of variables or a choice of the initial point. In most cases the stabilization of the approximating sequence is achieved with no more then 10 iterations. This seems to be rather satisfactory and shows its advantage over other methods used to approach the problem, e.g. as in [Panek 2001].       

In the formulation of economical problems we follow the monograph (in Polish) by E. Panek [Panek 200], and also a very readable exposition of A. P. Barten and V. Böhm Consumer Theory in [Arrow, Intriligator 1982], while the mathematical instruments are mostly taken from the books of W. Walter [Walter 1992] and S. Krantz and H. Parks [Krantz, Parks 2002]. 

Two optimization problems of mathematical economics
Consumer theory
In the classical approach to the theory of consumer demand it is assumed that the consumer preferences may be described by means of a 
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 (this symbol stands for the class of functions possessing continuous partial derivatives up to second order) utility function 
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 defined on the consumption set 
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, assumed here to be a closed and convex cone with nonempty interior of the nonnegative orthant of the Euclidean space
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 dimensions. Here 
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 is of course the number of commodities included into considerations, while vectors 
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 to denote a price vector, with components 
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 denoting the amounts paid in exchange for one unit of the 
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 is therefore the value of a commodity bundle 
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 with respect to the given price system 
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. Further, if the initial income (wealth) of the consumer is denoted by 
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, then the so called budget set of the consumer is denoted by 
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. This represents the set of all consumption bundles which are so to say within the reach of the consumer. In the case when 
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 the budget set is the solid compact 
[image: image25.wmf]k

-dimensional simplex in 
[image: image26.wmf]k

R

+

.
Having set these notations, the main question of the consumer theory may be formulated as the problem of determining the best bundle available for the consumer within the budget set, or in the mathematical terms finding the maximum of the utility function over the budget set. 

Problem 1 (Maximization of the utility function).
It is sought for:
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under conditions:
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Under suitable assumption on the utility function (monotonicity and strict quasi-concavity) and positivity of the price vector 
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 it can be proved that the problem has a solution described by the following theorem (cf. Barten and Böhm in [Arrow, Intriligator 1982, p. 409]).  

Theorem 1 Given a positive price vector 
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 and a positive wealth 
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 the Maximization Problem 1 is uniquely solved by a certain vector 
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 with positive coordinates, so that:
There exists a unique positive constant (Lagrange multiplier) 
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Equivalently, the system 
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 is uniquely determined as a solution of the system of equations
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with 
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It is important to observe that the solution of the equations (1) and (2) depends on the given values of the prices and wealth, and thus the solution should be viewed as giving the demand function 
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. The study of properties of this function is the main objective of the theory, so it is of paramount importance to be able to solve the system.   

Firm (Production) theory
Here again, the choice situation is described in terms of a production function 
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 indicates the quantity  of the given good produced by utilizing of 
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 production factors in amounts given by the components of the vector 
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. In order to preserve analogy with the previous case (consumers theory) we do not include labor into production factors. Now we have the vector 
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 of unit prices for the production factors, and the unit price 
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 by which the product is being sold. The inner product 
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 gives the cost of producing the quantity 
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 of the final product, while the function 
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 describes the profit the producer can make by selling the whole amount of the produced good at the price 
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. It seems reasonable to assume that the firm has only finite resources which it can use for buying production factors, and thus that the analogous bound on the amount of money spent as in the consumer theory may be meaningfully considered. Thus we assume that there is a given wealth 
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 remaining at the disposition of the firm so that it will decide to run its production under condition that 
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. Similarly as before we shall denote the set of vectors (of production factors) satisfying this ,,budget" constraint by
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If we assume that the firm chooses that production plan which brings the maximum profit under the given constraints, then we have the following.   

Problem 2 (Maximization of the firms profit).

It is sought for:
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under conditions:
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Similarly as before, suitable assumptions on the production function (suitable degree of differentiability, strict quasi-concavity and monotonicity) assure the existence of a unique solution to this problem, as formulated in the following theorem.  
Theorem 2 With the given set of (positive) prices 
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 and given wealth 
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 The Problem 2 of profit maximization has a unique solution 
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 is the unique solution of the system of equations   
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Equivalently, the both components of the solution which are 
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A uniform formulation of the problem
Similarities visible in the formulation of both problems lead us to describe the situation in the following way. We are given a system of 
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 equations, 
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where for uniformity we have put  in place of the price vectors previously denoted 
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 or 
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, and the functions 
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and
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We envisage 
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 as components of a vector function 
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what enables us to write down the equations (5) in a form of one vector equation 
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Here 
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 has the meaning of the price vector (
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 or 
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 in the former formulation), 
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 is the wealth and the problem consists in determining 
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Clearly this can be seen as an instance of an “Implicit Function Problem”, the question being that of defining the values 
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where 
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 is the Hessian of the function 
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 is an appropriate price vector. By the assumption of strict quasi-concavity the Hessian is negative definite, hence the expression 
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The Newton's Method of solving nonlinear vector equations
By virtue of the Implicit Function Theorem it remains now to establish existence of a particular solution 
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 for the equation (9). Rather than treating the problem abstractly in full generality we have resorted to a numerical procedure of approximating such solution by using the multi-dimensional Newton's Method. It relies on constructing an approximate solution to the equation (9) by means of recursively defined sequence 
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with a initial value 
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 suitably chosen. It can be shown that for a large class of functions this sequence is convergent independently of the initial point and that the limit is a solution of (9). In fact, Newton's Method may be used to prove Implicit Function Theorem in its general form, cf. [Walter 1992, Krantz, Parks 2002].

It is worth mentioning that in many cases the full extend of the Newton's Method can be replaced by the so called Simplified Newton's Method allowing the use of the Banach Contraction Mapping Principle for a proof of convergence and estimates of the errors. 

In the remaining part of the paper we investigate the use of the Newton's Method to solve optimization problems formulated above.

Numerical calculations
A class of separable utility functions
In order to avoid trivial complications with the wording of our results they are formulated below in the context of consumer theory. For our numerical calculations we have chosen examples coming from the class of what is called separable utility functions, which are given by the formula 
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The price vector is denoted by 
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. It is trivially seen that the Hessian is a diagonal matrix with negative entries along the diagonal, so the functions satisfy the necessary assumptions. 
The numerical calculations are done for the following utility functions corresponding to 
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The corresponding price vectors are taken to be equal to:
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with the budget constraint
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The algorithm
The algorithm based on the Newton's method,
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does not ensure that the variables are positive at each stage of iteration. On the other hand, the utility functions (11, 12) and their partial derivatives are defined only for all 
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 variables are positive and the algorithm can be used without break.

The results
The numerical calculations are performed with use of a program written in the Matlab language (see e.g. [Pratap 2006, Zalewski, Cegieła 2002]). The initial values of the Lagrange multiplier are assumed 
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First, we consider the utility function 
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[image: image123.wmf]4

,

3

,

2

,

1

=

i

x

 obtained in ten iterations are shown as functions of the number of iteration for a few starting points. The initial values 
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 (Fig. 1c) do not satisfy the budget limitation (15). In all these cases the algorithm achieves the same optimal solution in a few steps, so it converges very quickly. 
In order to test the speed of convergence we have devised the following testing method. The discussed algorithm starts from some arbitrary point 
[image: image129.wmf])

0

(

x
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 achieve values which do not change during next steps, so one can conclude, that the solution was found with an accuracy possible in a numerical computing. We assume, that 
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 obtained in 1000 iterations is equal to the exact solution of the optimization problem. The norm of the vector 
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 steps of iteration. To compare results of optimization for a few utility functions (11, 12) involving different numbers of commodities we consider this norm divided by the norm of the solution: 
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The results are shown in Fig. 1d. The initial values of the quantity (18) are close to 1 due to the assumed starting points 
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 converges quickly to the optimal solutions for all the considered numbers of commodities: 
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Figure 1. The numerical results of successive iterations versus the number of iteration. The arguments 
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 (c). The relative norms (18) obtained for the utility functions 
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Note, that shapes of curves presented in Fig. 1d depend strongly on a choice of initial vectors 
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, exponents in the utility functions (11, 12) and prices (13, 14), but for wide range of values (not shown) the algorithm is numerically stable and lead to the solution of the considered optimization problems.

Summary and further outlook
Results concerning numerical solution of the system (9) for a choice of utility functions with a varied number 
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 of variables (commodities) presented here clearly demonstrate the applicability of the Newton's Method for the study of optimization problems of Mathematical Economics. Even with the use of relatively simple devices, the successive approximations obtained from the Newton's Method converge quite rapidly to a solution without regard to the number of variables or a choice of the initial point. In a paper under preparation the authors undertake a numerical study of various expansions paths and Engel curves for a class of separable utility functions.
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� Numerical problems occur when some component of the vector � EMBED Equation.3  ��� has final value many orders of magnitude smaller than the others. In this case one can assume that this component is zero and do not enter the utility function, so an optimization problem with one less commodity should be considered.
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