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The evaluation of the proportional hazards model adequacy
using residual diagnostics
Abstract
In the paper, we demonstrate how residuals can be calculated and used in assessing the adequacy of the proportional hazards model. We focus on different, particularly useful diagnostics: martingale residuals, deviance residuals, Cox-Snell residuals, Schoenfeld residuals and score residuals. The goal of the paper is to explain the role of these diagnostics in examining some aspects of the fit of the hazard model. A numerical example, which is based on the data from the Labour Force Survey in Poland (BAEL), will show how to use these residual statistics efficiently.
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Background and motivation
In the linear regression analysis, the way to evaluate possible violations of the model assumptions is a direct examination of residuals. Individual’s i residual is defined as 
[image: image1.wmf]i

i

y

y

ˆ

-

 and it is the difference between the observed value of the dependent variable and the value estimated under the assumptions of a specific model. In hazard models the dependent variable is the hazard rate, which is not observable. Thus, it is not possible to compute residuals by comparing observed versus predicted hazard rates for each unit. The fact that the observed value for the time to some event may be censored sets a regression analysis of the survival time apart from other regression models.
Central to the evaluation of the proportional hazards model adequacy is an appropriate definition of residuals. However, the absence of an obvious residual has led statisticians to create several different diagnostics, each with specific purpose in mind. In the paper, we focus on diagnostics that we find particularly useful: martingale residuals, deviance residuals, Cox-Snell residuals, Schoenfeld residuals and score residuals. The goal of the paper is to explain the role of these diagnostics in examining some aspects of the fit of the hazard model. A numerical example, which is based on the data from the Labour Force Survey in Poland (BAEL), will show how to use these diagnostics efficiently.
Proportional hazards models
Let T be a nonnegative random variable describing duration in any state with the distribution function 
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. There may be provided an additional function called the survival function S(t), which gives the probability that the duration T is greater than t (the probability of surviving past t), 
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The most frequently applied demonstration of the duration period distribution is the hazard function h(t). It is the limit of probability that the spell is completed during the interval [t, t+dt] given that it has not been completed before the time t, for dt→0.
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The hazard rates describe the intensity of transition from one state to another.

In the proportional hazards models, the conditional hazard rate h(t(X) can be factored into separate functions: 
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 is called the baseline hazard and exp(X() is a function of explanatory variables vector X (for more information see [1],[ 2]).
Cox’s approach to the proportional hazards model is the semiparametric method of analysing the effect of covariates on the hazard rate [3]. The Cox model states that the hazard rate for the jth subject in the data is 
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. Compared with the parametric approaches, the advantage of the semiparametric Cox model is that we have no need to make assumptions about baseline hazard; 
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 is left unestimated. The Cox model states that the hazard functions for two subjects i and j are multiplicatively related, that is their ratio is constant. One subject’s hazard is a multiplicative replica of another one.
Individual residuals

First, we will concentrate on those residual statistics for hazard models that are computed for each individual in the sample: martingale residuals, deviance residuals and Cox-Snell residuals.
1. Martingale residuals

For selecting the proper functional form of covariates to be included in the model, we can use martingale residuals. In the case of hazard function for repeatable events, these residuals for each individual can be interpreted as the difference over time between the number of events actually experienced and the number of events predicted by the model [4]:
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Suppose each person can experience either only one, or no, event (e.g. the subject dies). Consider a counting process that “counts” whether the event occurs at time t. We model this process as 
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 [5]. The function 
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 is equal to zero until the exact time the event occurs and is equal to one thereafter. The function 
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 is the systematic component of the model, which is equal to the cumulative hazard 
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 at time t under proportional hazards model until follow-up ends on the subject and it is equal to zero thereafter. The function 
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 is called a martingale and plays the role of the error component (with expected value of zero). After rearranging the martingale residual for the ith subject may be expressed as
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where 
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 is the end of follow-up and 
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 for uncensored observations (ith observation is a failure) and is zero otherwise. For 
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 to be positive, individual i must have experienced the event and it must have happened before it was expected (the model “overpredicts”). Negative value for 
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 can happen if an individual experienced no event (i.e. the event time was censored) or experienced the event but later than expected (the model “underpredicts”).
To find the appropriate functional form of a variable, we fit a model excluding the variable and then plot the lowess smooth of the martingale residuals against some transformation of the variable in question. If the transformation is appropriate, then the smooth should be approximately linear [6]. Plots of martingale residuals are sometimes difficult to interpret because these residuals are skewed toward negative values (not symmetric about zero), taking values between 
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 and 1. The sum of the martingale residuals is zero.

2. Deviance residuals

Deviance residuals are rescaling of the martingale residuals and are computed as (see [7]):
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i=1,...,n. 



(4)
They are symmetrically distributed around 0 and have an approximate standard deviation of 1. Thus they are more like residuals obtained from linear regression.

Plots of these residuals versus the linear predictor, survival time, rank order of survival, or observation number can be useful in assessing model fit and identifying aberrant observations. Very high or very low values of deviance residuals suggest that the observation may be an outlier [8]. For uncensored data any unusual patterns in the plot of residuals against the covariates may suggest that the model fit is inadequate. However, censoring can produce striking patterns that not necessarily imply any problems with the model [9].
3. Cox-Snell residuals

Now we turn our attention to the evaluation of the overall model fit using Cox-Snell residuals (pseudoresiduals, generalized residuals) suggested in [10].

The Cox-Snell residual for observation i at time 
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where 
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 is the estimated cumulative hazard function obtained from the fitted model [11]. Cox-Snell residuals are nonnegative values and, therefore, are not symmetric about zero. In software packages, Cox-Snell residuals are computed from the martingale residuals using 
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If the Cox regression model fits the data well, these residuals should have an exponential distribution with unit mean (with hazard ratio 1). Thus, a plot of the cumulative hazard rate of the residuals against the residuals themselves should result in a straight line of slope 1. We can verify the model fit by estimating the empirical Kaplan-Meier or Nelson-Aalen cumulative hazard function, with the Cox-Snell residuals as the time variable along with the data’s original censoring variable [6].

Covariate-specific residuals

In the case of covariate-specific residuals - like Schoenfeld residuals, scaled Schoenfeld residuals and score residuals - instead of a single residual for each individual, there is a separate residual for each covariate for each individual.

1. Schoenfeld residuals

One way of checking proportional hazards assumption is based on analysis of Schoenfeld residuals (also known as partial residuals) [12]. Unlike martingale residuals, which compare the observed and expected number of events, Schoenfeld residuals compare observed and expected predictor values [4].
The Schoenfeld residual for covariate 
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The residual 
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 is the difference between the covariate value for the failed observation and the weighted average of the covariate values (weighted according to the estimated relative hazard from Cox model) over all those subjects at risk of failure when subject j failed [6]. The sum of the Schoenfeld residuals is zero. Positive/negative values identify individuals whose predictor values are greater/smaller than those of other subjects at risk at their event time.
Because Schoenfeld residuals compare predictor values at observed event times, they are defined only for individuals who actually experience the event. Software packages set the value of the Schoenfeld residual to missing for individuals whose observed survival time is censored [5].

By checking the proportional hazards assumption one has to compute the Schoenfeld residuals, fit the smooth function of time to them, and then test whether a relationship exists. The test for proportional hazards is a test of nonzero slope in a linear regression of scaled Schoenfeld residuals on function of time [6].
2. Scaled Schoenfeld residuals

Grambsch and Therneau suggest in [13] that scaling the Schoenfeld residuals by an estimator of its variance yields a residual with greater diagnostic power than the unscaled residuals. The vector of scaled Schoenfeld residuals is the product of the inverse of the covariance matrix times the vector of residuals [5]:
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The test of the proportional hazards assumption is based on the principle that the assumption restricts 
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 versus time will have a slope zero. The rejection of the null hypothesis of a zero slope indicates deviation from the proportional hazards assumption. Grambsch and Therneau showed in [13] that 
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 versus some function of time provides an assessment of the assumption.

3. Efficient score residuals
Score residuals are helpful for identifying individuals who have a disproportionate influence on the estimated parameters. The method of performing influence is to compare the estimated parameter 
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 is referred to as "dfbeta" in the literature. If 
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Harrell’s C statistic
Harrell’s C was proposed in [14] and was developed to evaluate the results of a medical test. The C index is defined as the proportion of all usable subject pairs in which the predictions and outcomes are concordant. Harrell says: “in predicting the time until death, concordance is calculated by considering all possible pairs of patients, at least one of whom has died. If the predicted survival time (probability) is larger for the patient who (actually) lived longer, the predictions for the pair are said to be concordant with the (actual) outcomes” [15].
The C index may be calculated as C = (E+T/2)/D, where D is the total number of pairs usable for comparison, E is the number of pairs for which the predictions are concordant with the outcomes and the predictions are not identical, and T is the number of usable pairs for which the predictions are identical [7]. C takes values between 0 and 1. A values of 0.5 indicates no predictive ability (no better than random guessing), and values of 0 or 1 indicate perfect separation of subjects with different outcomes and the predicted hazard ratios. C>0.5 implies a good prediction ability, and C<0.5 implies "good" anti-prediction (worse than random, but if we flip the prediction direction it becomes a good prediction).

Empirical example
To show how to use residual statistics in examining some aspects of the fit of the hazard model we present a numerical example, which is based on the data from the Labour Force Survey in Poland (BAEL) on December 2002. The survey concentrates on the situation of the population from the point of view of the economic activity. The whole BAEL-sample has been limited to a subsample of 1070 citizens of Pomorskie province aged 20 years or older, who in the period 1994-2002 have been employed for at least one year. At the end of the study, these people either were employed (911 persons) or were unemployed (159).
Estimating the Cox proportional hazards model the conditional probabilities of the transition from the employment state to the unemployment state are calculated. The explanatory variables for the model are: "Age" – individual’s age in years at the end of the study, "Education" – dummy: 1 if individual has tertiary education level, "Ruralarea" – dummy: 1 if the place of residence is rural area, "Agriculture" – dummy: 1 if individual works in the agricultural sector.

On the basis of the retrospective questions in BAEL-questionnaire we can conclude for how long one is employed or for how long one was employed until the exit to the unemployment state. The individual employment duration (in years) for each person built a variable "Duration".
The results of the econometric analysis for the timing of exit from the job are reported in Table 1. Having interpreted model parameters it can be stated that the one-year-older age of respondent leads to 6 per cent decrease of “hazard” in losing a job (
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). Having tertiary education level leads to 74 per cent decrease of risk on exit a job. Among inhabitants of rural areas the risk of quitting the job is 48 per cent greater than in urban area. The employment in the agricultural sector decreases the hazard of quitting the job by 65%.

Table 1. Results of Cox models estimation for the risk of leaving the job.
	Variable
	Haz. Ratio
	Std. Error
	z
	P>|z|
	Coef. (

	Age
	0.9395
	0.0084
	-6.98
	0.000
	-0.0624

	Education
	0.2575
	0.0936
	-3.73
	0.000
	-1.357

	Ruralarea
	1.4787
	0.2489
	2.32
	0.020
	0.3912

	Agriculture
	0.3435
	0.1308
	-2.81
	0.005
	-1.0687

	obs.no.

lnL
	1070
-991,893


Source: own computations.
Let us now examine the marginal results. To find appropriate functional form for a variable "Age", we fit a model excluding this variable and then plot a smooth of the martingale residuals versus an omitted predictor (see Figure 1, (A)). The approximately linear negative trend with "Age" suggests the appropriateness of adding linear "Age" as predictor in the Cox regression model. Now we plot the deviance residuals against "Age" (Figure 1, (B)). The elongated cluster of points for individuals with censored event times in the lower half and the more widely dispersed points in the upper half for the uncensored observation result directly from the residual’s definition. No patterns for uncensored data in the plot suggest that the model fit is adequate.
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Figure 1. (A) Plot of the smoother of martingale residuals against "Age"; (B) Graph of deviance residuals by "Age". Source: own computations.
To assess the overall model fit we estimate the model with all covariates and compute from the martingale residuals the Cox-Snell residuals. Then we generate the empirical Kaplan-Meier cumulative hazard function, with the Cox-Snell residuals as the time variable. These residuals should have an exponential distribution with hazard function equal to 1. Comparing the cumulative hazard of the Cox-Snell residuals to the straight 45° reference line, we observe that model does not fit the data too badly.
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Figure 2. Cumulative hazard of Cox-Snell residuals. Source: own computations.
Now we check the proportional hazards assumption based on the analysis of scaled Schoenfeld residuals. Table 2 reports the variable-by-variables Grambsch and Therneau tests of the proportional hazards assumption along with the overall test. We find no evidence that our specification violates the assumption. The next step is to plot the residuals for each covariate against the time and fit the smooth function to them (see Figure 3). No nonhorizontal trends appear suggesting that there is not any departure from proportionality for all covariates.
Table 2. Test of proportional hazards assumption.
	Variable
	Rho
	Chi2
	df
	Prob>chi2

	Age
	-0.0469
	0.41
	1
	0.522

	Education
	-0.0775
	0.95
	1
	0.329

	Ruralarea
	-0.0522
	0.44
	1
	0.507

	Agriculture
	0.0987
	1.51
	1
	0.219

	global test
	
	2.91
	4
	0.572


Source: own computations.
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Figure 3. Graphs of scaled Schoenfeld residuals versus time for "Age" (A), "Education" (B), "Ruralarea" (C) and "Agriculture" (D). Source: own computations.
In evaluating the adequacy of the fitted model, we have to identify individuals who have a disproportionate influence on the estimated parameters. The efficient score residuals were used to approximate the "dfbeta"-differences. The plot of "dfbeta"-differences versus duration time let us identify unusually influential observations (for example "dfbeta’s" for "Agriculture" on Figure 4).
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Figure 4. "dfbeta’s" for "Age" and "Agriculture". Source: own computations.
Using our data, we wish to calculate Harrell's C concordance statistic, which is defined as the proportion of all usable subject pairs in which the predictions and outcomes are concordant.
The number of comparison pairs is equal 120035, the number of orderings as expected is 86165 and the number of tied predictions 1124. The value of Harrell’s C equal to 0.7225 indicates that we can correctly order survival times for 72.25% pairs of subjects on the basis of the measurement of explanatory variables. As C>0.5, the model has a good prediction ability.
Conclusion
The uses of residuals vary and depend on the data and user preferences. Traditional uses are the following: martingale and deviance residuals are useful in determining the functional form of covariates to be included in the model and are occasionally useful in assessing lack of fit and identifying outliers, Cox-Snell residuals are useful in assessing overall model fit, Schoenfeld and score residuals are useful for testing the proportional hazards assumption and identifying outliers.
When fitting Cox models, the associated regression diagnostics allow us to learn things about the data that are unobservable by other means. Statistics described in this paper, each with a specific purpose in mind, are particularly useful and they help to answer the question whether the models need to be modified.
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