An application of copulas in the Value-at-Risk estimation

Marcin Dudziński and Konrad Furmańczyk

Faculty of Applied Informatics and Mathematics

Chair of Applied Mathematics

Warsaw University of Life Sciences

ul. Nowoursynowska 159, 02-776 Warsaw, Poland

E-mails: marcin_dudzinski@sggw.pl, konrad_furmanczyk@sggw.pl

Abstract. Value-at-Risk (VaR) is one of the most widely used risk measures in the field of risk management. It defines a change in value of a portfolio of financial assets as the minimum amount of money that one could expect to lose with a given probability over a specific time horizon. VaR of a portfolio is determined by the multivariate distribution of risk factors increments. This distribution may be modeled by copulas. In our paper, we show some ideas of the estimation of VaR by using of the copula approach. We apply these ideas to calculate VaR for a portfolio composed of the stock prices of Boeing Co. and General Motors Corp., available from the Dow Jones Industrial Average (DJIA). 
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1. Introduction


Value-at-Risk (VaR) has become a key measure of market risk in the past decade. Nowadays, it is probably the most popular measure of the risk of loss on a specific portfolio of financial assets. For a given portfolio, the confidence level and time period VaR is defined as a threshold value, such that the probability that the market loss on the portfolio over the given time period exceeds this value is equal to the given confidence level.

Suppose that at time 
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 assets with the prices 
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. Assume in addition that the parts of individual assets in the entire portfolio are constant in time and described by the vector of weights 
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 is given by
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Put 
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 Clearly, we have
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We define the profit and loss (P&L) function from period 
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 Furthermore, we denote by 
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, the time increment in the 
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-th risk factor from period 
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. Then, we can write the P&L function as follows:
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Thus, 
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Therefore,
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and it is easily seen that 
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where 
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 stands for the distribution function of 
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Observe that the 
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-dimensional distribution function 
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. Such a multivariate distribution function can be modeled by the functions called copulas. The theory of copulas is a fundamental tool in modeling the multivariate distributions. By using of copulas, we can split the distribution of random vector into individual components (marginals). Copulas enable to define the joint distributions through the marginal ones and provide the idea of modeling the dependence structure among marginals. They also allow to couple 
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-dimensional distributions into multivariate ones. Thus, we may link any group of univariate distributions with any copula. In particular, by appropriate facts from the copula theory, each marginal distribution function 
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, can be separately modeled from their dependence structure and subsequently coupled together in order to obtain the joint distribution function of 
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Our goal is to estimate VaR by applying of the copula approach. Several authors have become increasingly concerned over the estimation of VaR by copulas in recent years. There has been a lot of work on this issue throughout the past decade - one can refer to the papers of: Dias and Embrechts (2003), Fantazzini (2008), Giacomini and Hardle (2005), Hotta and Palaro (2006), Hotta et al. (2008), Hurlimann (2004), Jajuga (2008), and Martinelli and Meyfredi (2007) in this context.

Our database consists of the log return series of 2520 daily stock prices of Boeing Co. and General Motors Corp. in the period between August 30th 1993 and August 29th 2003, available from the Dow Jones Industrial Average (DJIA). We model the dependence between the both of the considered log return series by the four families of copulas. 
The paper is organized as follows. Section 2 gives a brief theoretical background on copulas and presents the examples of copula functions, we make extensive use of in our investigations. Section 3 contains the details of our estimation procedure. Our simulation results are summarized in Section 4. Finally, Section 5 concludes our research.
All the figures and simulations in our paper were carried out by applying of the R package, together with the copula and fGarch packages.
2. Copulas

At the beginning of this section, we give the general definition of the copula

Definition 1. A 
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-dimensional copula is a multivariate cumulative distribution function 
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, whose margins have the uniform distribution on the interval 
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The following theorem is a very significant result in the copula theory.
Theorem 1 (Sklar's theorem). Let 
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-dimensional distribution functions with marginal distribution functions 
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In addition, we have that, if 
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 are continous, then the copula 
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 is a unique one.

Conversely, if 
[image: image50.wmf]C

 is a copula and 
[image: image51.wmf]d

X

X

F

F

,...,

1

 are distribution functions, then the function 
[image: image52.wmf]F

, defined by (2), is the joint distribution function with marginal distribution functions 
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In our considerations, we restrict ourselves to the case of 
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-dimensional (bivariate) copulas. Below, we present the four families of copulas used in our paper, namely: the bivariate normal copula, the bivariate Student t-copula, the bivariate Plackett copula and the bivariate Clayton copula. 
2.1. The bivariate normal copula

The bivariate normal copula is the function of the form:
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where ϱ is the linear correlation coefficient between the two random variables and 
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 stands for the inverse of the univariate standard normal distribution function.
2.2. The bivariate Student t-copula
The bivariate normal copula is the following function:
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where ϱ is the linear correlation coefficient between the two random variables and 
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 denotes  the inverse of the univariate Student-
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 distribution function with 
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 degrees of freedom.
2.3. The bivariate Plackett copula
The bivariate Plackett copula is the function defined by:
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where 
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 stands for the given parameter value.
2.4. The bivariate Clayton copula

The following function is called the bivariate Clayton (or Cook Johnson) copula:
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where 
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 denotes the fixed parameter value.

3. Estimation procedure

We calculate VaR by applying of the GARCH model together with the copula theory. The GARCH(1,1) model is used to the log return series 
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, of 2520 daily stock prices of Boeing Co. and General Motors Corp., respectively, in the period between August 30th 1993 and August 29th 2003. Thus, the models for our margins are given by:
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where: 
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 are the white noise processes with zero mean and unit variance, and
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At the beginning, we estimate the parameters of the model, separately for each asset - we model the conditional distribution of the standardized innovations 
[image: image72.wmf]t

i

t

i

t

i

,

,

,

/

s

e

h

=

 by normal distribution and calculate the estimates 
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, of the models for the marginal variables 
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. In the next step, we model the conditional distribution of the standardized innovations 
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, by normal one. Then, we fit the four chosen families of the copulas - the normal copula, the Student 
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-copula, the bivariate Plackett copula, the bivariate Clayton copula - to the vector of residuals 
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. For each kind of copula, we estimate copula’s parameters by using the maximum likelihood method. In the next step, we generate 
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 from the previously estimated copulas. Subsequently, by applying the estimated GARCH(1,1) model (see (3)), we obtain a sample of 
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 Monte Carlo data 
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Then, due to (1), we get a Monte Carlo sample of losses 
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 - the desired estimate of the Value-at-Risk measure of our portfolio at time 
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4. Empirical studies

We start our empirical analysis with graphical presentation of our data set. For recollection, we consider a portfolio composed of Boeing Co. and General Motors Corp. assets. Figures 1a), 1b) present the daily stock prices of our assets from August 30th 1993 to August 29th 2003. Figures 2a), 2b) present their daily log-returns in the same time period (we denote these log-returns by 
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Figure 1a)




Figure 1b)
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Figure 2a)




Figure 2b)

It appears that the log-returns for our data may by modeled by GARCH models. This conclusion is strongly indicated by Figures 3a), 3b), which show the sample autocorrelation function of the series 
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Figure 3a)




Figure 3b)

The table below presents the maximum likelihood estimates of the two fitted GARCH(1,1) models, together with the Akaike’s information criteria (AIC), for the log-return series 
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	Parameters
	Estimates
	Std. Errors  
	P-values

	μ1
	-7.196e-04   
	3.528e-04   
	0.04141 

	α1
	7.426e-06
	2.715e-06
	0.00624 

	β1
	9.648e-02
	1.518e-02    
	2.09e-10 

	γ1
	8.940e-01   
	1.705e-02   
	< 2e-16 

	Log Likelihood1
	-6276.479    

	AIC1
	4.984507

	μ2
	 -5.179e-04
	3.778e-04
	0.170437 

	α2
	1.258e-05
	 3.736e-06
	0.000758

	β2
	7.057e-02
	1.232e-02
	1.03e-08

	γ2
	9.032e-01
	1.751e-02
	< 2e-16

	
	

	Log Likelihood2
	 -6252.299

	AIC2
	4.965317


Table 1: The parameter estimates of GARCH(1,1) models and standard errors
We notice that the Ljung-Box test does not reject the null hypothesis from lag 15 for the residuals and the squares of the residuals for each of the series  at the 5% significance level. The p-values are 0.14 and 0.17 for the first series (concerning Boeing Co.) and 0.38 and 0.89 for the second one (concerning General Motors Corp.).
Figure 4 gives the scatterplot of 
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 - the estimates of the standardized innovations.
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Figure 4
Figures 5a), 5b) below confirm that our log-returns series are normally distributed.
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Figure 5a




Figure 5b)

We think, it is worth to include the following plots into our paper.
[image: image110.png]Box plot of log-returns from Boeing Co.
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 Figure 6a)




Figure 6b)

In the table below, we give the obtained values of VaR
	
	Normal copula*)
	Student t-copula*)
	Plackett copula
	Clayton copula

	Copula’s parameters
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Table 2. The estimation results for the different weights 
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             *) The results obtained after the removing of outliers (see Figures 6a), 6b))
5. Conclusions

The estimated values of VaR in Table 2 have been given in a decreasing order. It shows that the largest loss in our portfolio occurs, when 
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, while the smallest one is reached for the case 
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. Thus, it seems more profitable to own such a portfolio of the Boeing Co. and General Motors Corp. shares in which, there are more Boeing Co. assets than General Motors Corp. ones. 

The obtained VaR estimates are similar for all of the four considered families of copulas In particular, the VaR estimates calculated from the GARCH+Normal copula and GARCH+Plackett copula models are almost identical and so is the case for the GARCH+Student t-copula and GARCH+Clayton copula models.

Our empirical studies indicate that the VaR estimates received from the GARCH+Normal copula and GARCH+ Plackett copula approaches are more conservative than the ones obtained by applying of the GARCH+Student t-copula and GARCH+Clayton copula models.

We believe that the procedure of VaR estimation presented in our paper may be developed in further research concerning the area of risk management.
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