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Abstract. Value-at-Risk (VaR) is one of the most widely used risk measures in the field of risk management. It defines a change in value of a portfolio of financial assets as the minimum amount of money that one could expect to lose with a given probability (tolerance level) over a specific time horizon. VaR of a portfolio is determined by the multivariate distribution of risk factors increments. This distribution may be modeled by copulas. In our paper, we show some ideas of the estimation of VaR by using of the copula approach. We apply these ideas to calculate VaR for a portfolio composed of the stock prices of Boeing Co. and General Motors Corp., available from the Dow Jones Industrial Average (DJIA). 
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1. Introduction


Value-at-Risk (VaR) has become a key measure of market risk in the past decade. Nowadays, it is probably the most popular measure of the risk of loss on a specific portfolio of financial assets. For a given portfolio, the confidence level 
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 and time period, VaR is defined as a threshold value, such that the probability that the market loss on the portfolio over the given time period exceeds or equals this value is equal to the tolerance level 
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Suppose that at time 
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 a portfolio consists of 
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 assets with the prices 
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. Assume in addition that the parts of individual assets in the entire portfolio are constant in time and described by the vector of weights 
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. Then, the value of a portfolio at 
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 is given by
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Put 
[image: image9.wmf].

,...,

1

,

ln

:

,

,

d

i

S

Z

t

i

t

i

=

=

 

 Clearly, we have

[image: image10.wmf](

)

.

exp

,

1

 

t

i

d

i

i

t

Z

V

å

=

=

w


We define the Profit and Loss (P&L) function from period 
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 to 
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 Furthermore, we denote by 
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, the time increment in the 
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-th risk factor from period 
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 to 
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. Then, we can write the P&L function as follows
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Thus, in the case, when the distribution function of the P&L function is continous and strictly increasing, 
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Therefore,
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and it is easily seen that 
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where 
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 stands for the inverse function of the distribution function 
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Observe that the 
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-dimensional distribution function 
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 depends on the d-dimensional distribution function 
[image: image36.wmf]t

X

F

 of the vector 
[image: image37.wmf](

)

t

d

t

t

X

X

X

,

,

1

,...,

=

. Such a multivariate distribution function can be modeled by the functions called copulas. The theory of copulas is a fundamental tool in modeling the multivariate distributions. By using of copulas, we can split the distribution of random vector into individual components (marginals). Copulas enable to define the joint distributions through the marginal ones and provide the idea of modeling the dependence structure among marginals. They also allow to couple 
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-dimensional distributions into multivariate ones. Thus, we may link any group of univariate distributions with any copula. In particular, by appropriate facts from the copula theory, each marginal distribution function 
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, can be separately modeled from their dependence structure and subsequently coupled together in order to obtain the joint distribution function of 
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Our goal is to estimate VaR by applying of the copula approach. Several authors have become increasingly concerned over the estimation of VaR by copulas in recent years. There has been a lot of work on this issue throughout the past decade - one can refer to the papers of: Dias and Embrechts (2003), Fantazzini (2008), Giacomini and Hardle (2005), Hotta and Palaro (2006), Hotta et al. (2008), Hurlimann (2004), Jajuga (2008), and Martinelli and Meyfredi (2007) in this context.

Our database consists of the log return series of 2520 daily stock prices of Boeing Co. and General Motors Corp. in the period between August 30th 1993 and August 29th 2003, available from the Dow Jones Industrial Average (DJIA). We model the dependence between the both of the considered log return series by the four families of copulas. 

The paper is organized as follows. Section 2 gives a brief theoretical background on copulas and presents the examples of copula functions, we make extensive use of in our investigations. Section 3 contains the details of our estimation procedure. Our simulation results are summarized in Section 4. The performance of our models is assessed in Section 5, by using of some bactesting procedure. Finally, Section 6 concludes our research.

All the figures and simulations in our paper were carried out by applying of the R package, together with the copula, fGarch and VaR packages.
2. Copulas


At the beginning of this section, we give the general definition of the copula.
Definition 1. A 
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-dimensional copula is a multivariate cumulative distribution function 
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, whose margins have the uniform distribution on the interval 
[image: image45.wmf][

]

1

,

0

 

.

The following theorem is a very significant result in the copula theory.
Theorem 1 (Sklar's theorem). Let 
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 denote a 
[image: image47.wmf]d

-dimensional distribution function with marginal distribution functions 
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In addition, we have that, if 
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 are continous, then the copula 
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 is a unique one.

Conversely, if 
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 is a copula and 
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, defined by (2), is the joint distribution function with marginal distribution functions 
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In our considerations, we restrict ourselves to the case of 
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-dimensional (bivariate) copulas. Below, we present the four families of copulas used in our paper, namely: the bivariate normal copula, the bivariate Student t-copula, the bivariate Plackett copula, and the bivariate Clayton copula. 
2.1. The bivariate normal copula


The bivariate normal copula is the function of the form
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where 
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 is the linear correlation coefficient between the two random variables and 
[image: image60.wmf]1
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F

 stands for the inverse of the univariate standard normal distribution function.
2.2. The bivariate Student t-copula

The bivariate Student t-copula is the function given by
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where 
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 is the linear correlation coefficient between the two random variables and 
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 denotes  the inverse of the univariate Student-
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 distribution function with 
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 degrees of freedom.
2.3. The bivariate Plackett copula

The bivariate Plackett copula is defined by

[image: image66.wmf](

)

(

)

(

)

(

)

(

)

(

)

[

]

(

)

(

)

[

]

ï

î

ï

í

ì

=

¹

-

-

+

-

+

-

+

-

+

-

=

,

1

,

1

1

4

1

1

1

1

1

2

1

;

,

2

1

2

/

1

2

1

2

2

1

2

1

2

1

q

q

q

q

q

q

q

q

 

 

for

u

u

for

u

u

u

u

u

u

u

u

C

where 
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 stands for the given parameter value.
2.4. The bivariate Clayton copula


The following function is called the bivariate Clayton (or Cook-Johnson) copula
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where 
[image: image69.wmf]q

 denotes the fixed parameter value.

3. Estimation procedure


We calculate VaR by applying of the GARCH model together with the copula theory. The GARCH(1,1) model is used to the log return series 
[image: image70.wmf](
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 of 2520 daily stock prices of Boeing Co. and General Motors Corp., respectively, in the period between August 30th 1993 and August 29th 2003. Thus, the models for our margins are given by:
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where: 
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 are the white noise processes with zero mean and unit variance, and
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At the beginning, we estimate the parameters of the models, separately for each asset - we model the conditional distribution of the standardized innovations 
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-distribution and calculate the maximum likelihood (ML) estimates 
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 of the models for the marginal variables 
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. Then, we fit the four chosen families of copulas - the bivariate normal copula, the bivariate Student 
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-copula, the bivariate Plackett copula, the bivariate Clayton copula - to the vector of residuals 
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. For each kind of copula, we estimate copula’s parameters by using of the ML method. In the next step, we generate 
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 Monte Carlo data 
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 from the previously estimated copulas. Subsequently, by applying of the estimated GARCH(1,1) model (see (3)), we obtain a sample of 
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 Monte Carlo data 
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Then, due to (1), we get a Monte Carlo sample of 5000 losses 
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 - the desired estimate of the Value-at-Risk measure of our portfolio at time 
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4. Empirical studies

We start our empirical analysis with the graphical presentation of our dataset. For recollection, we consider a portfolio composed of Boeing Co. and General Motors Corp. assets. Figures 1a), 1b) present the daily stock prices of our assets from August 30th 1993 to August 29th 2003. Figures 2a), 2b) present their daily log-returns in the same time period (we denote these log-returns by 
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Figure 1a)




Figure 1b)
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Figure 2a)




Figure 2b)


The table below presents the maximum likelihood estimates of the two fitted GARCH(1,1) models (with the 
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-Student innovations), together with the Akaike’s information criteria (AIC), applied for the log-return series 
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	Parameters
	Estimates
	Std. Errors
	p-values

	μ1
	-4.199e-04
	3.389e-04
	0.2153

	α1
	5.683e-06
	2.491e-06
	0.0225

	β1
	5.706e-02
	1.423e-02
	6.1e-05

	γ1
	9.319e-01
	1.696e-02
	< 2e-16

	v1
	5.589e+00
	6.181e-01
	< 2e-16

	Log Likelihood1
	-6357.18

	AIC1
	5.051354

	μ2
	-6.007e-05
	3.662e-04
	0.8697

	α2
	1.316e-05
	4.464e-06
	0.0032

	β2
	6.448e-02
	1.374e-02
	2.71e-06

	γ2
	9.062e-01
	2.053e-02
	< 2e-16

	v2
	7.606e+00
	1.047e+00
	< 3.82e-13

	Log Likelihood2
	-6304.96

	AIC2
	5.009893


Table 1: The parameter estimates of GARCH(1,1) models and standard errors

We notice that, in almost all cases, the Ljung-Box test does not reject the null hypothesis of null autocorrelations of the residuals from lag 1 to 15 for both series at the 5% significance level. The exceptions concern only the case of lag 2, for the first of our series, and the case of lag 1, for the second one. The corresponding p-values are as follows:

for the first series (relating to Boeing Co.): 0.3792, 0.04081, 0.08453, 0.0849, 0.08299, 0.09862, 0.1014, 0.1440, 0.1684, 0.09945, 0.1013, 0.1392, 0.1314, 0.1218, 0.1521,
for the second series (relating to General Motors Corp.): 0.04136, 0.08907, 0.1091, 0.09876, 0.05587, 0.07591, 0.1184, 0.1322, 0.1874, 0.2309, 0.2952, 0.3711, 0.4418, 0.3546, 0.3598.

Therefore, we may consider our models to be adequate.

Figure 3 gives the scatterplot of 
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 - the estimates of the standardized innovations.
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Figure 3

Figures 4a), 4b) below confirm that our innovations may have Student’s 
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-distributions.
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Figure 4a




Figure 4b)

In Table 2 below, we give the obtained values of 
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Table 2: The estimation results for the different weights 
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5. Bactesting


We shall assess the quality of the adjustment of our model by using of the bactesting procedure, which can be described stepwise as follows:
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 by the GARCH(1,1) model with Student’s-
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Step 
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 - the appropriate estimate of VaR;

Thus, after proceeding according to the steps 
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It is easily seen that our estimation procedure (presented in Section 3) is also described by the steps 50.1-50.6 of our bactesting.


Figures 5a), 5b) present the graphical comparison between the values mentioned in Step 
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, i. e., the realized returns of the P&L function. In turn, the solid lines connect the points representing the values of VaR estimates 
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, separately for each of the copulas taken into account.
We have restricted ourselves to the cases, when the P&L function is calculated with the weights 
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 (Figure 5b)). We observe that, for each kind of the considered copulas, 
[image: image207.wmf][

]

(

)

05

.

0

i

VaR

Ù

 exceeds 
[image: image208.wmf][

]

i

L

 only once in the first case, while it does not occur at all in the second one.
[image: image209.png]-10 05 00 05 10 15

-15

— Normal
— tStudent
— Plackett

Clayton

s





Figure 5a)
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Figure 5b)
6. Conclusions

The calculated VaR estimates (see Table 2) are similar for all of the four considered copulas. On average, the smallest values of VaR estimates have been obtained in the case of GARCH+Clayton copula approach, while the largest ones have been observed in the case of GARCH+Plackett copula model. Thus, although we must be aware of the small differences between the results obtained for our copula models, we may expect the largest probabilities of large losses, if we apply the GARCH+Clayton copula approach and the smallest ones, if we apply the GARCH+Plackett copula model. Therefore, the GARCH+Clayton copula approach seems to be the most pessimistic and the GARCH+Plackett one the most optimistic among the models used in our VaR evaluations.

We believe that the procedure of VaR estimation presented in our paper may be developed in further research concerning the area of risk management.
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