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Abstract
Hedonic house price models that incorporate environmental variables are becoming more and more popular, because a substantial body of research empirically confirms that consumers are willing to pay for environmental goods. 
The problem that arises when environmental information is included in such kind of models is that there is a mismatch between the spatial ‘support’ for the environmental measured variables and the property prices. In the literature, the usual solution to this problem is the elaboration of an environmental quality index (EQI), and then interpolating it (preferably kriging) in the locations where house prices are available and pollutants have not been measured. But in this paper it is proposed the inverse procedure, i.e. to interpolate (preferably cokriging) the environmental variables and, subsequently, elaborate an EQI, because the estimation variance is lesser. As far as we know, there is no research following this proposal. Both options are empirically compared in Madrid City (Spain).
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INTRODUCTION
It is well known that environmental pollution is one of the main components to take into account in housing pricing, overall in the case of weekend houses, holiday houses or vacation apartments. Consequently, it is reasonable to assume that air and noise pollutants enter into the utility function of potential house buyers [1], and it is not surprising that hedonic house price models that incorporate environmental variables among the set of explanatory variables are becoming more and more popular.
But the importance of environmental variables when estimating housing prices is not only an intuition. It has been checked empirically. This checking process is not an obvious question since there does not exist an explicit market for air pollutants, noise, etc. There exist several methods to empirically estimate the value of the above-mentioned pollutants, such as contingent valuation, conjoint analysis, discrete choice models and hedonic specifications, but the more successful has been the last one. In the context of the framework of hedonic price theory, the traditional approach to this problem has been to use the housing market to infer the implicit prices of these non-market goods (see [2]) for a comprehensive review of property value models for measuring the value of environmental amenities; [3] is also a recommended reference). Under standard assumptions of perfect competition, information and mobility, and the maximization of well-behaved preferences, hedonic theory unambiguously predicts that the implicit price function relating housing prices of an environmental amenity will be positive sloped, all else equal. A substantial body of research empirically confirms the hedonic theory and suggests that consumers are willing to pay for environmental goods such as air quality, absence of acoustic pollution, etc. In [4], 50 studies undertaken between 1967 and 1988 were reviewed, and 37 of them were identified as dealing with big cities offering hedonic price function estimations including air pollution measures. In the two last decades, [5, 6, 7, 8, 1] among others, are good examples of the focus on hedonic property-value models for estimating the marginal willingness of people to pay for a reduction in the local concentration of specified air pollutants. Nevertheless, in [9,10] it has been questioned the traditional approach to estimating the economic benefits of environmental variables (in particular, air quality), because the “true” relationship may be obscured in cross-sectional analysis by unobserved determinants of housing prices that co-vary with the environmental variables and propose the random assignment o air quality across localities.

The problem that usually arise when environmental information is included in hedonic house price models is that price of houses can be easily obtained in the desired locations of the area under study. But, unfortunately, the number of environmental monitoring stations is certainly scarce due to both physical and economic constraints, and are based on regular sampling (in [11] it is used an air pollution data set available at 30 locations in Milan district, in [8] 27 stations are considered in four Californian counties, in [1] measurements come from 28 monitoring stations for a pollutant and from 12 for the other pollutant considered in their analysis, also in South California, and in [12] only seven stations are investigated in Kraków). The house sales transactions being spatially distributed throughout the area under study, there is a mismatch between the spatial support of the environmental measured variables and the support for the property prices. This mismatching constitutes a serious drawback to include environmental variables in hedonic price models.
In the specialized literature, the usual solution to the abovementioned problem is to interpolate the environmental variables to obtain their interpolated values in the locations where house prices are available. Several interpolative alternatives have been considered in recent research and they use to provide different estimates when dealing with environmental variables [13]: Thiessen polygons, inverse distance method, splines and kriging and cokriging. But kriging (when dealing with one environmental variable) and cokriging procedures (when dealing with several ones) have important advantages [8]. In the presence of a unique environmental variable, kriging considers its spatial dependence, what is crucial obtaining optimal estimations when dealing with geo-referred data. In a multivariate approach, cokriging not only accounts for the spatial dependence of each variable but also for the inter-variable correlation. 

However, usually these variables are measured at the same monitoring stations, and in this so-called isotopic case, cokriging obtains a hardly noticeable benefit in relation to kriging. In fact, in the specific case of autokrigeability, cokriging reduces to kriging [14]. Otherwise, not only valid variograms are needed to represent the structure of the spatial dependence of the variables of interest, but also valid cross-variograms. This is one of the main reason (overall in a space-time context) why most of researchers opt to generate a single measure as a linear combination of this variables applying Principal Component Analysis (PCA) ([15, 16, 11] in the spatial context, and [17, 18] in the spatio-temporal modelling, are good classical references). Then, as a final step, a spatial interpolation is carried out to determine the level of contamination across the city in order to point out the so called ‘hot points’. But another different possibility can be considered: the cokriged (kriged in the homotopic case) interpolation of the environmental variables in the non observed locations and the subsequent elaboration of the environmental index using the weights coming from PCA.

Summarizing, when including several environmental variables in a hedonic price model, three possibilities can be considered: (i) interpolate (preferably cokriging) such variables and include all variables in the model; (ii) elaborate an environmental index and then interpolate it (preferably kriging); and (iii) interpolate (preferably cokriging) the environmental variables considered and, subsequently, elaborate an environmental index.    

Option (i) is preferred when dealing with only one environmental variable. In the case that several variables are included in the analysis, option (ii) is the one chosen in the specialized literature on the topic, arguing that it is a way to transform a multivariate problem in a univariate one. The last statement being true, in our opinion, option (ii) is not the best path to go from multivariate to univariate study of the problem. Best option is (iii) because the variance of the estimation errors is lesser than using (ii); in other words, replacing the vector of contaminant values, at a given location and/or time, by a weighted linear combination, as referred in option (ii), is not quite optimal as shown in [19]. 
Therefore, when the objective is the elaboration of an Environmental Quality Index (EQI) to be included as an explanatory variable in a hedonic housing price model, the suggestion we make is to interpolate directly the environmental variables where necessary, taking into account a crucial aspect: their spatial autocorrelation. Then, the last step is the generation of the index. Although it is true that there are a number of articles about kriging models applied to the area of environmental pollution and analysis in the environmental quality index theory, there are no examples in the literature following the proposal we present. 

Finally, note another novelty included in this research. Hedonic specifications typically include one or two air pollutants. But a viable treatment of environmental data should consider multiple contaminants. We have incorporated six pollutants and, as far as we know, there are no research considering six environmental variables, as here is done. Obviously, the incorporation of six (or more) variables to a hedonic house price model is not an easy task, and it is preferred to incorporate an environmental index that gathers the information contained in such variables.
After this introduction, Section 2 includes the main rudiments of kriging and theoretically faces options (ii) and (iii) above mentioned in terms of mean square error. In Section 3 both options are empirically compared using six environmental variables in Madrid City (Spain). Finally, some concluding remarks are reported in Section 4.
METHODS
Kriging theory

Researching the environment of a particular city in a real case, it is impossible to get exhaustive (even complete) values of data at every desired point because of practical constraints. Thus, interpolation is important and crucial to graphing, analyzing and understanding the environmental results. Assuming the great importance of the particular spatial location when analyzing environmental quality, among all the existing interpolation methods, geostatistics uses kriging to take account of spatial dependence. Kriging is a univariate procedure which interpolates the values of the target random function at unobserved locations using the available observations of the same random function. This interpolation procedure —which is a minimum mean-squared-error method of spatial estimation— produces the best linear unbiased estimator and uses the covariance or variogram function (the spatial equivalent of the autocorrelation function in time series analysis) to account for the correlation structure in making interpolative estimates.
Kriging can be viewed as a strategy equivalent to time series, but in space. It is based on the idea of stochastic processes or random functions over space, taking into account the multidirectional feature of the space in a concrete instant of time. This approach applies to a wide range of phenomena, cf. [ 20, 21, 22], and implies dealing with an infinite family of random variables
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 constructed at all points s in a region. The variables take different values depending on the location and the correlation structure, and each set of observed dataset is supposed to be a realization of the random function under study.
Observing the set of air quality monitoring sites as a group of points in a map, the pollution level measured at each site could be regarded as a realization of a spatial random function. As the monitoring sites only report these levels for locations
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are the observed the data, that is the observed level for pollutant k at the ith site. When obtaining a kriged estimate for the level of pollutant k, the observed values
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, for i=1,2,..,n, are available at each air monitoring sites, and the level for that pollutant at each location where housing prices are disposable, j, j({1,…,m}, is estimated as a weighted average of the level of pollutant obtained at sampled sites through the linear equation  (1):
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Depending on the nature of the random functions we deal with, different types of punctual kriging can be distinguished: simple kriging, ordinary kriging (OK) and universal kriging. In this work, given that the random functions are intrinsically stationary (i.e. for every vector h linking any two locations in the map the resulting process of first increments is second-order stationary), with unknown means, OK is used to obtain the estimates of pollution levels. Hence, requiring the classical conditions of unbiasedness:
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, and following, for instance, [23, pp 207-209 ], the weights of (1) could be achieved from λ= Γ-1 Γ0, being:
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where 
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 represents the vector that links (often the distance between) air monitoring stations i and m,
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 is a Lagrange multiplier, and 
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is the variogram function that shows how the dissimilarity between pairs of observations evolves with separation s, i.e., for any pair of locations 
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Variograms are obtained following a two steps procedure. First, using the classical variogram estimator based on the method-of-moments [24], ballpark point estimates of the variograms are reached. Second, to ensure a positive definite model, a theoretical variogram function (see, e.g. [25, pp 93-104]) is fitted to the sequence of average dissimilarities in keeping with the linear model of regionalization. GeoR, a package for geoestatistical data analysis using the R software, has been used to compute variograms, carry out the cross validation procedure, and obtain OK estimates.
An alternative kriged procedure for making EQIs
Once the kriging rudiments have been briefly presented, the rest of the section is focused on why kriging the environmental variables and then elaborate an environmental index is a better option than the usual procedure in the literature that consists of making an environmental index to be eventually interpolated (kriged). We use cokriging terms, more general than kriging ones, but remember that the simplicity criterion leads us to use kriging as cokriging obtains a hardly noticeable benefit in relation to kriging in the isotopic case. 
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, the level of k different pollutants, be intrinsic stationary random functions of order zero, and consider an EQI given by
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where
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The two options to linearly estimate
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are:

(i) Elaborate a EQI using the environmental information provided by the monitoring stations and then obtain the kriged estimates in locations (m) where housing prices have been observed, that is, 
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(ii) Cokrige
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 in locations where housing prices have been observed and there are no monitoring station, and then form
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Following [18], in general 
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(7)
that is, MSE is lesser when choosing option (ii) or, in other words, replacing the vector of contaminant values at a given location by a weighted linear combination and then kriging such a linear combination is not quite optimal. 
CASE STUDY: ELABORATION OF AN EQI FOR MADRID (SPAIN)
Air pollution in the study area  
Madrid (the capital of Spain) is the third-most populous municipality in the European Union, and is suffering a rapid suburbanization process where population and jobs are moving out of the central city. This process produces an imbalanced mobility pattern and more car dependency. In the last decade the number of vehicles in Madrid has increased by 5.6%, and in 2008 the number of unities was 1,917,382. This implies 1,202.5 vehicles per km. and 683.5 vehicles per 1.000 inhabitants (municipal register of Madrid). One million drivers enter and leave daily the city. So, car pressure is increasing as well as its negative environmental impacts. Nevertheless, air pollution in Madrid may be also attributed to other factors as manufacturing and heating systems during winter, among others. Currently, in Madrid there are working more than 1,200 coal boilers.
[INSERT FIGURE 1]

Due to the health effects of air pollution and that in recent years the major threat to clean air inside the cities is posed by traffic emissions, and following EU directives, in this article we have considered the following six pollutants: sulphur dioxide (SO2), nitrogen oxides (NOx) —which is a generic term for mono-nitrogen oxides (nitric oxide (NO) and nitrogen dioxide (NO2))—, carbon monoxide (CO), particulate matter (PM) —in this case measured through PM10, which is the fraction of suspended particles 10 micrometers in diameter and smaller—, and ground-level ozone (O3), considered an important secondary pollutant which is formed when NOx and volatile organic compounds (such as hydrocarbon fuel vapours and solvents) react chemically in the presence of sunlight. 

SO2 is produced mainly from the combustion of fossil fuels that contain sulphur, such as coal and oil. In Madrid City, 70% of this pollutant is originated in the residential, commercial and institutional sectors. But in the last years its level is significantly below the current legal limits due to the municipality proceedings. NOx are formed in most combustion processes by oxidation of the nitrogen present in combustion air, and it is a respiratory irritant. In Madrid, motor vehicles are the major source (76.2%) of the NOx due to NO2. Nitric oxide is believed to be quite harmless at the levels normally encountered in urban air in Madrid, and the reduction of its current level is one of the main worries of the Municipality with regard to environment, because nowadays the level of NO2 exceed by 30% the limit values of Directive 1990/30/EC for human health protection (200 ug/m3 in 2010). CO is a toxic gas formed as a product of incomplete combustion in the burning of fossil fuels. As with NOx, the main sources in most parts of Madrid are motor vehicle exhaust emissions (91.4% in 2007), and as such elevated levels are mainly found in areas of significant traffic congestion, particularly at busy intersections on inner-city streets. Nowadays CO levels in Madrid are significantly below the legal limits due to the improvement in the vehicle carburation system. PM refers to any airborne material in the form of particles, and encompasses those pollutants that we might commonly refer to as dust, smoke, aerosols or haze. The primary effects of particulate matter are aesthetic ones, such as the development of a hazy appearance in the air, or the soiling of clean surfaces. In accordance to the current legislation, levels of PM10 are not satisfactory in Madrid City. But the Municipality is not very worried about it because they consider that in Spain (and other countries in South Europe) vegetation is scarce and the contribution of particulates with natural origin to PM10 is certainly high. As it is well known, PM10 levels in Madrid have an important anthropogenic component: Saharan winds. O3 can be found in the troposphere, the lowest layer of the atmosphere. Tropospheric ozone (often termed "bad" ozone) is man-made, a result of air pollution from internal combustion engines and power plants. Automobile exhaust and industrial emissions release a family of nitrogen oxide gases (NOx) and volatile organic compounds (VOC), by-products of burning gasoline and coal. High levels of ozone are usually formed in Madrid in the heat of the afternoon and early evening, dissipating during the cooler nights. Fig. 2 shows the annual tendency of these pollutants in the last ten years.
[INSERT FIGURE 2]
Data set

The data used in this paper are provided for the Atmosphere Pollution Monitoring System of Madrid municipality
. They have been hourly measured at the 25 fixed operative monitoring stations during January, 2008. Fig. 3 shows the locations of the air quality monitoring stations, and Table 1 includes address, municipal district, and coordinates and altitude level of such stations.
[INSERT FIGURE 3]
[INSERT TABLE 1]

As can be seen in Fig. 3, most monitoring stations are located in the urban centre and relatively few in the peripheral sites. Note the reasonable coverage of the domain under study by the monitoring stations since most of Madrid population is concentred in the urban centre. 
For each hour, data have been daily averaged. As can be seen in Table 2, the range, mean, and standard deviation of the six daily averaged variables considered in the analysis considerably vary. This is the reason why data have been standardised. Summing up, we work with 24 hourly data sets, each one including six environmental variables. 

[INSERT TABLE 2]
In the literature of making EQIs, it is usual to average the hourly data and obtain monthly averages of the level of pollutants. Evidently, it makes easier the task of elaborating EQIs, but we have preferred not to use monthly averaged data because: (i) the spatial structure of dependencies is not the same every hour, and the averaging process could lead to compensate such different structures. (ii) Moreover, we have at our disposal 24 data sets to empirically compare the usual way of estimate EQIs with the alternative we propose.       

Finally, note that in the specialized literature hedonic specifications typically include only one air pollutant such as ground-level ozone (O3) [26, 27, 8], or particulate matter (PM) [9, 28], since these are most visible in the form of “smog” and are thought to have the greatest health impacts. In some cases, the variables included are two ([29], which include carbon monoxide (CO) and PM, and [1] which consider the measures of O3 and PM concentrations, are recent examples) or, at most, three, in order to minimize omitted variable problems. But a viable treatment of environmental data should consider multiple contaminants. Obviously, the incorporation of six (or more) variables to a hedonic house price model is not an easy task, and it is preferred to incorporate an environmental index that gathers the information contained in such variables. 
Kriging modelling, results, and discussion
As it was pointed out in the introduction, it is more and more frequent the use of environmental variables as explanatory variables in hedonic housing price models. But if the number of environmental variables is more than one, it is a common practice to elaborate EQIs that condense the information provided for the environmental variables, so that only one environmental variable (EQI) is included in the model. However, there is a mismatch between the spatial support of the environmental measured variables and the support for housing prices. 
In particular, in our study case (Madrid City) we deal with six environmental variables (so, an EQI is needed), and the number of monitoring stations is 25, while mean housing prices in the 2,358 census tracks of Madrid are at our disposal. We have chosen measuring mean housing prices at census track level because it also could allow for inclusion, among others, of subjective environmental variables. 
This mismatching leads to the estimation of EQI values at the census tracks where there is not environmental information at our disposal. As also pointed out in the introductory section, several interpolative alternatives have been considered in recent research, but when dealing with environmental variables kriging has important advantages, because it takes into account the spatial dependencies, what is crucial to obtain optimal estimates when dealing with geo-referred data ([12, 30], are good examples of the advantage of kriging over the other interpolative methods in the environmental field).
The classical geostatistical model assumes that data are Gaussian. In the Gaussian case, as it is well known, the optimal predictor (taking the mean square error as a loss function) is linear and coincides with kriging predictors. This assumption may be certainly strong for some data sets, but in our particular standardized data set Gaussian transformation has been no needed. Also, UTM coordinates have been transformed in 
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  coordinates to easily interpret the resulting empirical semivariograms.

Once decided that we use kriging to match the monitoring stations registers to the Census data, and standardized the environmental variables, we next face and compare the usual approach in the literature (first elaborate an EQI and then obtain kriged estimates of the EQI) to the alternative approach we propose (in a first step we krige the environmental variables to the complete surface and finally, we elaborate the environmental index). In order to build the final synthetic index, we use Principal Components Analysis (PCA), as usual in the literature.

In a first stage, we proceed to elaborate what we call the “standardized observed EQI”. That is, we apply PCA to the six standardized environmental variables at our disposal and extract the first component, obtaining the coefficients for the environmental variables in the observed EQI
 (see Table 3). Finally, the values of the observed EQI are computed for every monitoring station and every hour.
[INSERT TABLE 3]

In a second stage, OK estimates of the observed index have been obtained in the locations where there is a monitoring station. A cross-validation procedure has been carried out to obtain such estimates. Spatial dependencies have been represented by Gaussian variograms from 01a.m to 06a.m, exponential variograms (with one exception) between 07a.m. and 04p.m., and spherical models from 05p.m to 12p.m. Except from 11a.m. to 18p.m., there are notable nugget effects, and ranges are, in average, around 20 percent of the domain longitude. 
In the third and last stage, these estimates (one for each hour and each monitoring station) are compared to the observed EQI values, and hourly mean square errors (MSE) are computed. Table 4 reports these hourly MSE.

Alternatively, we proceed to implement the new approach consisting of:

1. Obtaining, by a cross-validation procedure, OK estimates of the environmental variable values at locations where monitoring stations are sited in Madrid City. We first have computed the 144 classical empirical variograms, which have being represented by their corresponding theoretical models. In particular, most of semivariograms representing the spatial dependencies of levels of SO2 and CO levels were exponential. In the case of NO2 and PM10 most of semivariograms were spherical. When dealing with the spatial dependencies in the NOx case the semivariograms used to be Gaussian. And finally, the O3 spatial dependence was modelled by Spherical semivariograms in the night hours and Exponential ones from 9a.m. to 8p.m.

2. Weighting the estimates of the environmental variable values with the coefficients obtained through PCA, and computing the estimated EQI for each hour and each monitoring station.

3. Comparing the EQI estimated and observed values and computing hourly mean square errors (MSE).
Table 4 shows the hourly MSE derived from the usual and alternative approaches to estimating an EQI for Madrid City.

[INSERT TABLE 4]

As expected, in Table 4 it can be appreciated that the alternative approach gives better results in 15 out of 24 hours: from 06p.m. to 03a.m. (both included) and from 07a.m. to 11a.m. (also both included). From 05a.m. to 06a.m. and from 12a.m. to 01p.m. results were practically identical. And at 04a.m. and from 02p.m. to 05p.m. the traditional procedure has a negligible advantage (just the hours when spatial dependencies are softer). Then, the alternative approach generates less MSE than the classical procedure in the hours when traffic is dense and/or heating is working. In particular, the reduction of MSE in the hours most affected by traffic and/or heating (between 07p.m. and 03a.m.) using the new procedure is by 10.6%. From 07a.m. to 11a.m. (hours with a high level of economic activity in Madrid City) the reduction in MSE is by 3%, but it has to be considered that in these hourly lag the spatial dependencies are not precisely strong.  Therefore, it can be appreciated that, in general, the alternative approach has better results, in terms of MSE, than the traditional one, and the stronger the spatial dependencies are the bigger the advantage of the alternative procedure is. 
Fig. 4 provides the hourly EQI prediction maps. First one (left-up corner) corresponds to 01h a.m., second one (in the first line) corresponds to 02h a.m., …., and last one (right-down corner) corresponds to 12h p.m. 
[INSERT FIGURE 4]

CONCLUSIONS AND FUTURE RESEARCH LINES
Hedonic housing price models with explanatory environmental variables are becoming more and more popular due to a substantial body of research that empirically confirms the hedonic theory and suggests that consumers are willing to pay for environmental goods. Typically, only one or at most two or three environmental variables are considered in hedonic housing price models. However, a viable treatment of environmental data should consider multiple contaminants. We have incorporated six pollutants and, as far as we know, there are no research considering six environmental variables, as here is done. Obviously, the incorporation of six (or more) variables in a hedonic house price model is not an easy task, and it is preferred to incorporate an environmental index that gathers the information contained in such variables.
But in most of real cases there is a mismatch between the spatial support for the environmental measured variables and the property prices. In the specialized literature, the usual solution to this problem is to elaborate an environmental index, and then interpolating it (preferably kriging). Nevertheless, it can be demonstrated that, in general, an alternative procedure provides a lesser prediction MSE: interpolate (preferably cokriging in the heterotopic case or kriging in the homotopic one) the environmental variables considered and, subsequently, elaborate the environmental index.    

In this research we have empirically compared both the traditional and the alternative approaches by elaborating an EQI for Madrid City (Spain). The database includes 24 daily averaged (January 2008) datasets, one per hour. Results indicate that in the hours when traffic is denser and/or heating is working the alternative procedure has a notable advantage, while in the rest of the hours both procedures generate similar results. But, the most important insight is that the stronger the spatial dependencies are the bigger the advantage of the alternative procedure is. 
This case study empirically confirms an important aspect of the geostatistical theory when dealing with several variables and the objective is to transform a multivariate problem in a univariate one: In general, prediction MSE is lesser when interpolating the variables involved in a linear combination and then elaborating such a linear combination. But the literature continues to obviate this important result and the usual procedure is to first elaborating the linear combination and then interpolating it.   Obviously, our research includes only a case study and our results must be confirmed in other big cities and in different months. 

Finally, there are at least two important aspects that could give rise to future research lines: (i) the elaboration of a statistical location design of the network of monitoring stations to reduce the most as possible the variance of the prediction error; and (ii) the inclusion of source-receptor matrices in the analysis to take into account the way in which atmospheric influences distort the source-receptor distribution (i.e. how pollution “travels” from the source of emission (point sources or mobile sources) to where it is measured. 
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Fig. 1. Location of Madrid




Fig. 2. Sulphur dioxide, Nitrogen dioxide, Carbon monoxide, Particulate matter (PM10) and Ozone. Madrid (1998-2007).
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Source: Report on Air Quality in Madrid. 2007. General Direction for Environmental Quality, Control and Assessment. Municipality of Madrid. 

Fig. 3. Location of the air quality monitoring stations.
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Table 1. Atmosphere pollution monitoring stations in Madrid.
	STATION
	ADDRESS
	DISTRICT
	LONGITUDE LATITUDE ALTITUDE (meters)
	CHARACTERISTICS

	01
	Paseo Recoletos
	Centro
	3º41’31.00’’ 40º25’21.36’’  678
	City centre, financial area, high traffic site

	03
	Pl. del Carmen
	Centro
	3º42’11.42’’ 40º25’09.15’’  657    
	City centre, commercial area, pedestrian zone with very limited traffic 

	04
	Pl. de España
	Moncloa
	3º42’44.40’’ 40º25’26.37’’  637
	City centre, commercial area, high traffic site

	05
	Barrio del Pilar
	Fuencarral
	3º42’41.56’’ 40º28’41.62’’  673
	North part of the city, commercial area, high traffic site

	06
	Pl. Dr. Marañon
	Chamberí
	3º41’27.00’’  40º26’15.39’’  669
	City centre, commercial area, high traffic site

	07
	Pl. M. Salamanca
	Salamanca
	3º40’49.19’’ 40º25’47.81’’  679
	Residential and commercial  area, high traffic site high income level

	08
	Escuelas Aguirre
	Salamanca
	3º40’56.35’’ 40º25’17.63’’  672 
	high traffic site, but opposite to the biggest green area in the city 

	09
	Pl. Luca de Tena
	Arganzuela
	3º41’36.35’’ 40º24’07.68’’  605
	South part of the central almond, near to the inner ring road of the city 

	10
	Cuatro Caminos
	Chamberí
	3º42’25.66’’ 40º26’43.95’’  699
	City centre, commercial area, high traffic site, old buildings

	11
	Av. Ramón y Cajal
	Chamartín
	3º40’38.47’’ 40º27’05.30’’  708
	North part of the city, near to a highway, dispersed build-up.

	12
	Plaza Manuel Becerra
	Salamanca
	3º40’06.78’’ 40º25’43.70’’  678
	South part of the city, high traffic site, near to the inner ring road of the city 

	13
	Vallecas
	Puente Vallecas
	3º39’05.48’’ 40º23’17.34’’  677
	South part of the city, high traffic site, intensive build-up, low income level

	14
	Plaza Fdez. Ladrada
	Usera
	3º42’59.71’’ 40º23’06.28’’  605
	South part of the city, intensive build-up, high traffic site, industries, very low income level.

	15
	Pl. de Castillla
	Tetuán/Chamartín
	3º41’19.29’’ 40º28’05.73’’  729
	North part of the city, institutions, high income level, dispersed build-up, high traffic site

	16
	Arturo Soria
	Ciudad Lineal
	3º38’21.24’’ 40º26’24.17’’  698
	North-East part of the city, high income level, dispersed build-up

	18
	General Ricardos
	Carabanchel
	3º43’54.60’’ 40º23’41.20’’  625
	South-West part of Madrid, populous area, intensive build-up, low income level

	19
	Alto Extremadura
	Latina
	3º44’30.83’’ 40º24’28’.29’’ 632
	West part of Madrid, green areas, dispersed build-up

	20
	Av. Moratalaz
	Moratalaz
	3º38’43.06’’ 40º24’26.64’’  671
	East part of the city, intensive build-up, medium income level

	21
	Isaac Peral
	Moncloa
	3º43’04.54’’ 40º26’24.51’’  672
	West part of Madrid, near to an important highway

	22
	Paseo de Pontones
	Arganzuela
	3º42’46.56’’ 40º24’22.95’’  622 
	Next to the city centre, near to the inner ring road of the city

	23
	Alcalá (end)
	San Blas
	3º36’34.62’’ 40º26’55.44’’  637
	North-East part of Madrid, populous area, intensive build-up, low income level

	24
	Casa de Campo
	Moncloa
	3º44’50.44’’ 40º25’09.68’’  645
	Main green area in the city

	25
	Santa Eugenia
	Villa Vallecas
	3º36’09.18’’ 40º22’44.48’’  652
	South-East part of the city, old buildings, industries, near one important highway, very low income level

	26
	Urb. Embajada
	Barajas
	3º34’48.42’’ 40º27’33.56’’  620
	North-East part of the city, near the airport, dispersed build-up

	27
	Barajas Pueblo
	Barajas
	3º34’48.10’’ 40º28’36.94’’  631
	North-East part of the city, near the airport, intensive build-up


Source: General Direction for Environmental Quality, Control and Assessment. Municipality of Madrid.  (*) Pl.: Square. Av: Avenue. Urb: condominium. Monitoring Stations 17 and 2 are not operative.

Table 2. Environmental variables: Main descriptive statistics.
	
	Min.
	Max.
	Mean
	Standard

deviation

	SO2(a)
	10.11
	21.84
	15.99
	5.17

	NOx(a)
	66.82
	238.65
	150.10
	40.85

	NO2(a)
	37.14
	99.79
	69.01
	14.16

	PM(a)
	13.44
	49.08
	32.16
	8.75

	O3(a)
	9.75
	24,65
	15.50
	3.49

	CO(b)
	0.31
	0.86
	0.58
	0.18

	(a): μ/m3;    (b): mg/m3


Source: Own elaboration.
Table 3. Environmental variable coefficients in EQI (ACP)
	Hour
	SO2
	CO
	NO2
	PM10
	NOX
	O3
	Percentage of variance extracted

	1
	0.166
	0.238
	0.234
	0.242
	0.284
	-0.149
	55.5

	2
	0.172
	0.239
	0.273
	0.23
	0.317
	-0.128
	50.4

	3
	0.154
	0.231
	0.266
	0.26
	0.321
	-0.132
	49.6

	4
	0.151
	0.223
	0.277
	0.232
	0.33
	-0.166
	49.1

	5
	0.121
	0.207
	0.279
	0.24
	0.336
	-0.195
	48.4

	6
	0.105
	0.199
	0.281
	0.245
	0.339
	-0.214
	47.6

	7
	0.095
	0.22
	0.255
	0.252
	0.306
	-0.197
	52.3

	8
	0.129
	0.221
	0.263
	0.272
	0.31
	-0.144
	51.2

	9
	0.141
	0.236
	0.253
	0.289
	0.303
	-0.101
	51.3

	10
	0.165
	0.261
	0.226
	0.265
	0.274
	-0.092
	55.5

	11
	0.153
	0.249
	0.219
	0.241
	0.264
	-0.133
	59.8

	12
	0.181
	0.243
	0.217
	0.222
	0.258
	-0.123
	61.6

	13
	0.208
	0.234
	0.217
	0.207
	0.256
	-0.124
	61.9

	14
	0.208
	0.227
	0.213
	0.201
	0.252
	-0.136
	63.5

	15
	0.208
	0.222
	0.215
	0.196
	0.253
	-0.149
	63.3

	16
	0.207
	0.214
	0.194
	0.212
	0.244
	-0.161
	64.9

	17
	0.197
	0.225
	0.206
	0.194
	0.256
	-0.18
	62.3

	18
	0.185
	0.219
	0.194
	0.202
	0.242
	-0.185
	65.9

	19
	0.169
	0.227
	0.196
	0.221
	0.254
	-0.195
	61.8

	20
	0.158
	0.252
	0.209
	0.249
	0.294
	-0.182
	53.2

	21
	0.104
	0.258
	0.254
	0.28
	0.33
	-0.125
	48.3

	22
	0.093
	0.259
	0.239
	0.281
	0.311
	-0.133
	51.1

	23
	0.137
	0.253
	0.233
	0.269
	0.304
	-0.129
	52.4

	24
	0.151
	0.249
	0.235
	0.268
	0.296
	-0.112
	53.4


Source: Own elaboration.

Table 4.Traditional and alternative approaches for estimating EQIs. 
MSE estimating an EQI for Madrid City (Spain)

	Hour
	Kiriging the EQI
MSE (i)
	Kriging Enviromental Variables MSE (ii)
	MSE (i)-MSE (ii)

	1
	0,99
	0,82
	0,17

	2
	0,87
	0,82
	0,05

	3
	1,02
	0,86
	0,16

	4
	0,75
	0,77
	-0,02

	5
	0,83
	0,83
	0,00

	6
	0,96
	0,96
	0,00

	7
	1,08
	1,07
	0,01

	8
	1,09
	1,07
	0,02

	9
	1,05
	1,00
	0,05

	10
	0,96
	0,91
	0,05

	11
	0,87
	0,85
	0,02

	12
	0,72
	0,72
	0,00

	13
	0,57
	0,57
	0,00

	14
	0,53
	0,54
	-0,01

	15
	0,56
	0,58
	-0,02

	16
	0,54
	0,55
	-0,02

	17
	0,66
	0,67
	-0,01

	18
	0,75
	0,72
	0,03

	19
	1,06
	0,89
	0,17

	20
	1,09
	0,98
	0,11

	21
	1,08
	1,07
	0,01

	22
	1,08
	1,05
	0,03

	23
	1,05
	0,93
	0,12

	24
	1,00
	0,87
	0,13

	Total
	0,89
	0,84
	0.05


Source: Own elaboration.

Fig. 4  Hourly EQI prediction maps.
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� The value of the estimate depends upon the weights�EMBED Equation.DSMT4��� that are used.


� Information of these data can be obtained from the Municipality of Madrid’s web page at � HYPERLINK "http://www.munimadrid.es" ��www.munimadrid.es�


� The averaged percentage of the total variance extracted with the first component is 55.6%.
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