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Abstract
· In the present paper, a new definition of elasticity operators in algebras with right invertible operators is proposed. The definition uses logarithmic and antilogarithmic mappings of algebraic analysis [1]. A general solution of an equation and a unique solution of an initial boundary values problem with an elasticity operator are established. Moreover, the results can be applied to economics in order to find a function if elasticity of this function is given.
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1. Introduction

It is now more than 20 years since the appearance of Danuta Przeworska-Rolewicz’s well-known book about algebraic analysis [2]. The term “Algebraic Analysis” was initially used by Lagrange in the title of his book in 1797, [3]. The main idea of Algebraic Analysis in its present, stricter, sense derives from the fact that the differential operator :=d/dt is right invertible. In mathematics, elasticity of a positive differentiable function  x(t),  t>0 is defined as follows :

(Ex)(t):=tx-1(t)x’(t)=dlnx(t)/dlnt. In section 3, it will be shown that there exist a right invertible operator D and an operator  L  induced by  D  that the operator E=DL. The term elasticity is widely used in economics. In economics, elasticity is the ratio of the percent change in one variable to the percent change in another variable. Elasticity is a popular tool among economists because it is independent of units and simplifies data analysis. The income elasticity of demand and the price elasticity of demand are mainly used by economists.
Throughout this work  F will denote either  the real field, R, or the complex field, C. Let  X  be a linear space over F.

1.1. Definition. A  non empty subset  A  of  X×X  is said to be multivalued operator in  X, if A is linear subspace of  X×X  then  A is called a linear operator. From now on, we use the following notation about   A : 

· dom A := { x ( X : ( u( X such that (x,u) ( A},

· Ax := { u ( X : (x,u) ( A } , x ( dom A,

· ran A := { u ( Ax : x ( dom A },

· ker A := { x ( dom A : 0 ( Ax }.

When an operator A is linear and  A0={0},  we say that A is univalent linear operator. In this case, we shall write Ax=u  instead  Ax ={u}. If  A  and  B  denote multivalued operators in  X, a( F, we can also consider the multivalued operators:

A+B :={ (x,u+v) (  X×X : (x,u) ( A, (x,v) ( B },

AB := { (x,u) (  X×X : ( v ( X such that (x,v) ( B and  (v,u) ( A },

and

aA := { (x,au) (  X×X : (x,u) ( A }.

In short, the operator  { (x,ax) (  X×X : x ( X }  will be denoted by a or aI. Moreover, we can always consider the inverse of A:
A-1 := { (u,x) (  X×X : (x,u) ( A }.

By L(X) we denote the set of all univalent linear operators defined on  X. Write 
L0(X) := { A( L(X) : dom A=X }.

A multivalued operator  A  is to be right invertible if there is an operator  B  such that 

ABx = x   for  all x ( dom B.

The operator B is called of right inverse of A.

We shall consider in L(X) the following sets (c.f. [2]):

· the set  R(X)  of all right invertible operators belonging to  L(X) ;

· the set RD := { R ( L0(X) :  DRx = x  for  all  x ( X };

· the set  FD := { F( L0(X)  :  F2 = F, FX = ker D and ( R( RD : FR=0} of all initial operators for  a  D ( R(X) .

We note, if   D ( R(X), R( RD and ker  D ≠ {0 }, then the operator D is right invertible, but not invertible.  We have 

DRu= {u} for all u(X   and   ( x( dom D: RDx≠{x}.

Here the invertibility of an operator A( L(X) means that the equation Ax = y has the unique solution for every y ( X.  If  F is an initial operator for D corresponding to R then  
Fx =x – RDx=(I-RD)x  for x(dom D and  Fz=z  for (ker D.
The theory of right invertible, univalent linear operators and its applications is presented by D.Przeworska-Rolewicz in [2]. 
Example 1.1 (cf. [2], [4]). We denote by X=C[a,b] the set of all real-valued function defined and continuous on a closed interval [a,b]. The set X is a linear space over the field of real numbers R  if the addition and multiplication by a number are defined as follows: (x+y)(t)=x(t)+y(t); ((x)(t)= (x(t) for  x,y∈X,  t∈[a,b], (∈ R .  Similarly properties has the set C1[a,b](X  of all real-valued function defined on a closed interval [a,b] and having  continuous derivative in (a,b).Suppose that we are given a point  t0∈[a,b] and  c is an arbitrary fixed real number. We can prove that every function x∈X  has a primitive function on [a,b] and there exist a primitive function u(t) ∈X such that u(t0)=c. Write  D:=d/dt. Every function x∈X  has a primitive function u(t) ∈X such that u(t0)=0  and  u(t)=(Rx)(t)=
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. The operator  R is well-defined for all continuous functions. Moreover is a linear operator. The definition of  R  implies that (DRx)(t)=x(t), for all x∈X; t∈[a,b]. The operator D is right invertible but not invertible since  (RDx)(t)=x(t)-x(t0). 
In the works ( [1],[2],[5-8], [9-11]) we can find another examples of right invertible operators.
1.2. Proposition. Suppose that  D ( R(X), ker  D ≠ { 0 } and  R( RD is arbitrarily fixed. Then the operator

D-1 := { (x,u) ( X×X : u=Rx+z, x ( X,  z ( ker D },

is multivalued, non univalent linear inverse of D.

Proof. Indeed, the general solution of the equation Dx = u  for  u(X  has the form x=Ru + z, where z( ker D is arbitrary fixed (cf.[2]). This implies that  ran D = X   and 

dom D = { x (X : x=Ru + z, u ( X ; z ( ker D} .
We have  

D-1x = {u ( X : u=Rx +z, z( ker  D }  for all  x ( X ,  

D D-1x  = D (Rx +z) = DRx + Dz = x  for  x ( X ; z ( ker D  

and by the equality  RDx+z=x-Fx+z= x+z1,  where F is an initial  operator for D corresponding to R,  the elements z,z1( ker D

D-1Dx = { u( X :  u =  x +z , z( ker D}  for all  x( dom D.

Clearly, ran D = dom D-1=X , ran D-1=dom D .

2. Logarithms induced by right invertible operators
If  X  is a commutative algebra over a field F  with a  D(L(X) such that the dom D  is a subalgebra of  X, i.e. if  x,y (dom D  implies xy (dom D  then we write A(X). 
We shall consider in A(X)  the following sets:

· the set  I(X)  of all invertible elements belonging to  X ;

· the set I(X)  of all invertible operators belonging to L(X).

Suppose that  D ( A(X)(R(X),  following D.Przeworska-Rolewicz  (cf. [1], [12], [13]) we consider the multivalued operator

( = {(u,x) ( X×X  :  Du = uDx , u,x( dom D },
 and its inverse 

( -1= {(x,u) ( X×X  :  Du = uDx , u,x( dom D }.

The equation  Du=uDx  for (u,x) ( (  is sad to be the basic equation. Obviously,

the multivalued operator ( is well-defined and  dom ( ( ker D \ {0}.

Suppose that (u,x) ( ( , L  is selector of  (  and  E  is a selector of (-1. By definition, Lu ( dom  (-1,  Ex ( dom ( and the following equations are satisfied:

Du = uDLu,       DEx=(Ex)Dx                                  (2.1).

Any invertible selector L of  (  is said to be a logarithmic mapping and its inverse  E=L-1 is said to be a antilogarithmic mapping. For  the operators L,E and  (u,x) ( ( , the elements  Lu, Ex  are said to be logarithm  of  u and antilogarithm of  x, respectively. By G(() we denote the set of all pairs (L,E), where  L  is an invertible selector of ( and  E=L-1.
We can prove (cf. [1]) that for  (L,E) ( G(() and  for (u,v) ( graph (:
ELu=u,     LEx=x ;

DEx = (Ex)Dx,   Du= uDLu ;

L(ker D \ {0})( ker D  ,   E(ker D) })( ker D.

A logarithm of zero is not defined. The logarithms and antylogarithms are uniquely determined up to a constant. If D( A(X)(R(X) and dim ker D >0  then X  is an algebra with unit e (ker D, the operators  L,E  satisfy the equalities  Le=0,  E(0)=e . This implies, if  u,u-1 ( dom (  than  Lu-1= -Lu. We say that the operator D(R(X) satisfies the Leibnitz condition if 
D(xy)=xDy+yDx,  for  x,y ( dom D.
If  D( A(x) and if satisfies the Leibnitz condition than X is to be a Leibnitz algebra. It was proved (cf.[1]) that a logarithmic mapping  L is exponential type, i.e.  
L(uv) = Lu + Lv, for u,v ( dom (,
if and only if   X  is a Leibnitz commutative algebra. If  L is of  exponential type, then 
E(x+y) = (Ex)(Ey)  for x,y ( dom (-1.
Moreover, in a Leibnitz commutative algebra with D(R(X) a necessary and sufficient condition for  u ( dom ( is u ( I(X).

In the next part of our consideration we assume that  A(X)  is a Leibnitz commutative algebra with D(R(X) and there exists a pairs (L,E), where  L  is an invertible selector of ( and  E=L-1.

We take a definition which play an important part in our considerations.
Definition 2.1. The superposition DL of the operators  D  and  L  will be called the operator of elasticity, the element  DLu –elasticity of an element   u( dom (.
Now we consider the equation

DLu=v ,   where  u( dom (,  v( ran D                                      (2.2)
The following lemma will be needed in the proof of the next theorem.

Lemma 2.1. If  u1, u2  are solutions of the equation (2.2) then there exists  z(ker D such that
u1=zu2.
Proof. Let u1, u2 satisfy the equation (2.1) i.e. DLu1 =y and DLu2 =y, then 
DLu1 - DLu2 =D(Lu1 - Lu2)=0.

This implies that  z1= Lu1 - Lu2(ker D.  By our assumptions,  we have 
Lu1 - Lu2 = L(u1 u2-1)  and  EL(u1 u2-1)=Ez1 (ker D.
Hence,  u1 u2-1 =z , where z= Ez1  and   u1 =z u2 .
Theorem 2.1.  The general solution of the equation (2.2) has the form 

u=zE(Rv),                                                                        (2.3)

where  z(ker D is arbitrary, R is a right inverse operator of  D.
Proof. Indeed, let u be the form (2.3), then

DLu=DL(zE(Rv))=D(Lz+LE(Rv))=DLz+DLE(Rv)=DLz+D(Rv)=DRv=v,

which proves that  u defined by the Formula (2.3) is a solution of the Equation (2.2). 
On other hand, we suppose that u* is a solution of the Equation (2.2) and u* is not form of (2.3),  and u=z1E(Rv), where z1(ker D is arbitrarily fixed. Since u is a solution of the Equation (2.2), therefore by Lemma 1 we conclude that there exists z2(ker D such that u*=z2 u . Hence,  u*=z2z1E(Ry)=zE(Ry), where z(ker D, which contradicts our assumptions. 
Corollary 2.1. The operator of elasticity DL is right invertible and  ER is a right inverse of DL.
Let F be an initial operator for D. An initial boundary value problem for the operator of  elasticity DL is following. Find all solutions of the Equation (1.1) satisfying the initial condition:

FLu=z*,         z(ker D                                                (2.4)

Theorem 2.2. The initial value problem for the operator DL (2.2), (2.4) is well-posed and its unique solution is of the form:
u=E(z*+Rv).                                                                        (2.5)

Proof.  Indeed, let u be the form (2.3).  Then u  is a solution of the equation (2.2) and 
FLu = FL(zE(Rv)) = F(Lz+LE(Rv)) = F(z1 + Rv) = z1 +FRv = z1,
where z1 =Lz. This implies that  z=Ez1. Hence, if  u  satisfies the condition (2.5) then  u=(Ez*)E(Rv) = E(z*+Rv)  
3. Economical applications 
In mathematics, elasticity of differentiable function  x  at point  t∈R is defined as follows
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In economics, it is the ratio of incremental change of the logarithm of a positive function with respect to incremental change of the logarithm of the argument. This definition of elasticity is also called point elasticity, and is the limit of arc elasticity between two points. 
Elasticity can be approximated using percent changes 
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or the ratio
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Elasticity can be treated as a measure of responsiveness. It tells how much one thing changes when you change something else that affects it. For example, the price elasticity of demand tells us how much the quantity demanded changes when the price changes. The price elasticity of demand measures the responsiveness of quantity demanded to changes in the price charged. 
We can find economic applications in [14]-[17] and economical applications of elasticity are given in [18], [19], [20].
In similar way as in Example 1 we denote by X=C[a,b], where a>0 the set of all real-valued function defined and continuous on a closed interval [a,b]. Suppose that we are given a point  t0∈[a,b]. We define the operators D as follows: 

(Dx)(t):=tx’(t)     for  x∈C1[a,b](X;  t∈[a,b].
(Rx)(t)=
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     for x∈X; t∈[a,b].
The operator  R is well-defined for all continuous functions. Moreover is a linear operator. Indeed, let  x, y ∈X and  (,(∈R. Then obviously (x+(y∈X and 
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The definition of  R  implies that  RX( dom D= C1[a,b] and 
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   for all x ∈X ; t∈[a,b].
The operator D is right invertible but not invertible since 
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A function  x(t) ∈X is said to be constant if there is a scalar c such that x(t)=c for all t∈[a,b]. Since in our case t>0 then the equality tx’(t)=0  for all t∈[a,b] implies x’(t)=0 for all t∈[a,b]. Therefore ker D={x∈C1[a,b]: x’(t)=0   for t∈[a,b]} is the space of all functions constant in [a,b], moreover dim ker D =1.
We note, the operator defined as follows 

(Fx)(t):= x(t)-(RDx)(t)=((I-RD)x)(t)=x(t0) for  x∈C1[a,b];  t∈[a,b]
is an initial operator of  D  corresponding to the right inverse  R  of D. 

The set  X  is a Leibnitz algebra induced by the operator  D. Indeed,  D  satisfies the Leibnitz condition:
[D(xy)](t) = t(xy)’(t) =t[x’(t)y(t)+x(t)y’(t)] = y(t)(Dx)(t) + x(t)(Dy)(t) 
for  x∈C1[a,b];  t∈[a,b].
Let  X+ :={x∈X: x(t)>0 for  t∈[a,b]}, we define the operators 
Lx:=ln x  for x∈X+  and  Ex:=exp(x)=ex   for  x∈X.

Then the operators  L  and  E  have the properties: 
· L  is selector of   (:=( X+( C1[a,b])(X,
· E  is a selector of (-1:= X( ( X+( C1[a,b]),

These operators are induced by the operator  D .  Suppose that  (u,x) ( ( , by the definition, Lu ( dom  (-1,  Ex ( dom ( and the Equations  (2.1)  are satisfied:
u(t)(DLu)(t) = u(t)t[lnu(t)]’ = u(t)t (u(t))-1u’(t)=t u’(t)=(Du)(t),
(DEx)(t) =t[ex(t)]’= tex(t)x’(t)= ex(t)t x’(t)= (Ex)(t) (Dx)(t)

for all t∈[a,b],     i.e. Du = uDLu,     DEx=(Ex)Dx .

The superposition DL of the operators  D  and  L  was earlier called the operator of elasticity, the element  DLu –elasticity of an element  u( dom ( .  In our case elasticity of an element
u ∈X+( C1[a,b]) determined (the well-known in the theory of economics) formula 


[image: image9.wmf]tu'(t)

(DLu)(t)=

u(t)

   for t∈[a,b].
If the operator  F  is an initial operator of  D  corresponding to the right inverse  R  of D, then
(FLu)(t)=Lu(t0)=lnu(t0) , u ∈X+( C1[a,b]). Hence, if  (FLu)(t)=C0 ∈R  then 
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Theorem 2.2 implies that the initial value problem:
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where u ∈X+( C1[a,b]),  v( ran D , C0 ∈R , t∈[a,b]  have the unique solution of the form:
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Clearly, the general solution of the equation (3.1) has the form: 
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Remark 3.1. The given method above we can apply to functions which are negative. We observe, if  -w ∈X+( C1[a,b] then 
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The general solution of the ordinary differential equation 
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has the form
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The solution of the equation (3.4) which satisfies the condition ln (w(t0)(=C1  is of the form 
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Remark 3.2.  Using the above notations, we note that if for the space X-:={x∈X: x(t)<0 ;  t∈[a,b]} we take the pair  (L1,E1)  of  the operators 

L1x:= ln (-x)  for x∈X-  and  E1x:= -exp(x)=-ex   for  x∈X.

Then the operator  L1  is selector of  the set  (1:=( X-( C1[a,b])(X,  the operator  E1  is a selector of  
[image: image20.wmf]1
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:= X( ( X-( C1[a,b]). These operators are induced by the operator  D . Indeed, we suppose that  (w,x) ( (1, then by the definition, L1w ( dom 
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,  E1x ( dom (1 and the Equations  (2.1)  are satisfied:
w(t)(DL1w)(t) = w(t)t[ln(-w(t))]’ = w(t)t (-w(t))-1(-w’(t))=t w’(t)=(Dw)(t),

(DE1x)(t) =t[-ex(t)]’= t(-ex(t))x’(t)= -ex(t)t x’(t)= (E1x)(t) (Dx)(t),
for all t∈[a,b], i.e. Dw = wDL1w,  DE1x=(E1x)Dx .
Remark 3.3. In similar way as above, we can apply the theory of elasticity operators to the partial elasticity of functions. Indeed, for an example. Let P:={(t,s)∈R2 :  0<a≤t≤b; c≤s ≤d} and C(P) denotes the space of all real functions  x(t,s)  defined and continuous on P. The operator  
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 is right invertible and the operator  (Rx)(t):=
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  is a right inverse of  D, the pair  (L,E)  of operators L:=ln, E=exp  are selectors of the operator D for positive functions. 
Example 3.1. Under the sufficient conditions, for a given function  v(t)  of Formula (3.1), we receive the set of functions u(t) determined by Formula (3.3), where C denotes an arbitrary real number. The function  v(t) is the elasticity of the function u(t) at the point t, where C is arbitrarily fixed. These results present Table 1. Formulas of the functions  v  and  u  are most used by economics.  In general, the formulas for the function u  define demand functions.
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	Törnquist demand function of first kind
(=(,  (=1,  C>0
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	Törnquist demand function of second kind
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	Törnquist demand function of third kind
a,C>0
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	cf. [18]


Table 3.1.  Formulas for functions and their elasticities.
4. Conclusions
The methods presented in the work give a unified approach to equations which contain elasticity of functions. These methods are based on logarithms mappings induced by a right invertible operator. The given formula for a solution of the initial boundary values problem allows calculating a function in this case when the elasticity of the function is given. Therefore, the methods can be applied to solve problems of economics with different kinds of elasticity. Mathematical theory of Algebraic Analysis provides good tools for solving of these problems.
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