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Abstract

In the present paper we propose a stochastic process to explain the evolution of socially
interacting consumers deciding between two product variants over time. With this model
we support and extend Becker’s (1991) explanation about the effect of social interactions
on prices charged by two similar restaurants competing for consumers. We show that the
demand polarization proposed by Becker is just assured by the high level of similarity
of product variants (the restaurants). We also show that such demand polarization does
not occur when product variants are dissimilar and when consumers’ preferences are
sufficiently heterogeneous.

The proposed stochastic process also allows us to analyze combinations of fixed and
varying consumers’ heterogeneities over time. Our theoretical results suggest how to
combine these types of heterogeneities in order to drive the state of consumers’ decisions
into a desired state of decisions.

A game theoretical explanation for the persistence of market share asymmetry is pre-
sented for duopolies with interacting consumers. This is deduced from the equilibrium
analysis of a price-game, in which there are two producers - game players - and many
socially interacting consumers. We also present a generalization of the price-game, the
location-price game, in which product locations and prices are chosen by the market play-
ers. In equilibrium, locations will coincide whenever the strength of social interactions
among consumers is grater than a critical value. By contrast, when the strength of social
interactions is smaller than this critical value, one restores Hotelling’s (1929) standard
result according to which the distance between product variants is maximal.
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1 Introduction

Becker (1991) proposed an interesting model to explain the demand behavior of two similar
restaurants competing for consumers across from each other. He illustrates his model with
the following interesting case: ”. . . A popular seafood restaurant in Palo Alto, California,
does not take reservations, and every day it has long queues for tables during prime
hours. Almost directly across the street is another seafood restaurant with comparable
food, slightly higher prices and similar service and other amenities. Yet this restaurant
has many empty seats most of the time. Why doesn’t the popular restaurant raise prices,
which would reduce the queue for seats but expand profits? . . . ”

In order to explain this puzzle (demand polarization and constancy in over-demanded
restaurant prices), Becker supposes essentially that individual choices for restaurants are
positively influenced by the restaurants’ aggregated demands. Supposing such positive
externalities in consumer choices, hereafter called social interactions, a slight increase in
prices could not only eliminate the queue, but also cut an additional number of costumers
who use to visit the restaurant just because it is permanently over-demanded. The result-
ing effect is that a slight increase in prices might reduce significantly (discontinuously) the
restaurant’s demand, bringing it below the restaurant’s capacity and also below the profit
maximizing sales level. Knowing this, the management of the over-demanded restaurant
opt rationally not to raise its prices in spite of a positive excess demand.

In this paper we propose a model of heterogeneous interacting agents that supports
and extends Becker’s analysis. The model is inspired by Becker’s duopoly model and the
literature on phase transitions in social systems. Before presenting the novelties of our
contribution, we present a brief literature review. A rich literature review until 2000 is
provided by Glaeser and Scheinkman (2003).

Previous work. The occurrence of phase transition in social systems can be traced back
to Föllmer (1974). In his pioneering paper applying statistical mechanics to economics, he
modeled an exchange economy with two goods and many interacting consumers. Based
on the Ising model, Föllmer shows the existence of two equilibrium price vectors in two
respective phases of the economy.

Galam et al. (1982) proposed a model of strike that exhibits phase transition in
the workers’ level of production. Depending on the model parameters (the interaction
strength among workers and their social permeability), the workers’ level of production
admits two (meta) stable states: a predominant strike state and a predominant work
state. Hysteresis of production level is analyzed in respect to the workers’ salary.

Gennotte and Leland (1990) shows that small supply shocks in stock markets may
cause significant price falls (crashes) or high price volatility even if the extent of hedging in
the market is not expressive. Crucial for the occurrence of price fall is that the proportion
of uninformed investors (about the extent of hedging) is sufficiently large. In this model,
mimetic contagion occurs as a consequence of poorly informed agents inferring stocks
future prices from other agents’ decisions. Bickhchandani et al. (1992) model and analyze
this kind of mimetic contagion assuming complete rationality of agents. In this model,
agents evaluate their actions based on their prior private information about the state of
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the world and the posterior information observed in the actions of others. Bickhchandani
et al. (1992) shows that if agents decide in a sequential order, then the process of agents’
decisions degenerates to a sequence of copies of decisions. Interestingly, this result is
proved under the assumption that all agents are rational and fully informed that, up to a
few number of initial decisions, all agents’ decisions are merely copies of their predecessors’
ones (information cascade).

Orlean (1995) proposed a similar model with the essential difference that the author
drops the assumption of a sequential order in which decisions are made. In Orlean’s model,
agents have no objective information about the right proportion of independent agents
in the population of agents, that is, agents that base their decisions on their own prior
information about the state of the world. In Orlean’s model, the resulting distribution of
agents’ decisions depends on the distribution of individual subjective guesses about the
“right” fraction of independent agents in the population of agents.

Galam and Moscovici (1991) investigated formations of group consensus with analytic
methods of Statistical Physics. A distinctive model result is that group consensus tend
to polarize when group size decreases.

Becker (1991) explains how the market shares of two similar restaurants may be subject
to phase transitions (and discontinuities in prices) when individual choices for restaurants
are positively influenced by the popularity of the restaurants.

Kirman (1993) proposes a stochastic process to explain herd behavior as a model of
recruitment for the exploitation of a common interest. The paper suggests a more general
explanation of Becker’s (1991) restaurant case: demand polarizations are explained as
local maxima of the limit probability distribution of a stochastic process of decisions - not
as a deterministic equilibrium.

Glance and Huberman (1993) examine the evolution of the fraction of effective co-
operating individuals in producing a public good. In the proposed model, agents have
the incentive to cooperate based on their expectations of inducing others to cooperate
in the future. Individual expectations about the impact of one’s attitude on the future
behavior of others depend on the group size as well on other model parameters, as time
horizon. Particularly interesting are investigations concerning group sizes that support
cooperation.

Dalle (1997) studied the occurrence of phase transition in industry landscapes. He
modeled an industry landscape as a set of firms adopting one of two available technologies.
Due to positive externalities in technology choice, firms have the incentive to mimic one
another’s technology choice. This polarization tendency depends crucially on the industry
under consideration: if the industry is such that the firms are well structured and possess
their internal R & D, then the firms are more autonomous in their technology choice
(high heterogeneity), whereas if the industry is such that the firms are typically small,
not equipped with their own R & D, then the firms tend to copy the technology choice
of others (low heterogeneity). Dalle analyzes the condition under which an industry
landscape converges toward standardization or the coexistence of different technologies.

Challet and Zhang (1997), based on Arthur’s (1994) El Farol Problem, propose a
different approach for analyzing demand behavior in speculative markets. In the so-
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called Minority Game, an odd number of agents chooses one of two possible actions
and wins one point if the minority side is chosen. Based on their memory about the
last observed minority and majority sides, agents “infer” the best action to choose and
choose it accordingly. Of course, there is no objective best action to be inferred from
the past (if there were one, it would be the worst one whenever the majority chooses
it). In this game, the population of agents attains the highest level of cooperation when
they split into nearly 50% at each side over time. The authors show that a high level of
cooperation arises (about 50% at each side) when the size of the agents’ memory reaches
a critical size. Insightful experiments are performed in which the size of the agents’
memory is changed as a consequence of an evolutionary process of the population of
agents. Interestingly, the mean size of the agents’ memory converges to the critical size,
where cooperation predominates. For further related papers, see the Minority Game web
page: www.unifr.ch/econophysics/minority/.

Nadal et al. (1998) model the choice process of a buyer that has to choose (at different
times) a single seller to deal with. Long run fidelity to some sellers arises when the
buyer’s profit (supposed to be independent of sellers) exceeds a critical level. The authors
emphasize a particular parametrization in which the corresponding invariant probability
distribution of the choice process can be derived from a compromise between prospecting
market information from dealing with different sellers and making immediate profit with
the most profitable seller.

Yin (1998), and later Levy (2004), model outbreaks of collective adoption of attitudes
from the point of view of threshold models. In these models each agent decides individually
to join a certain attitude (for example, protest against the government) as soon as a
fraction of the population, or more, does. Depending on the distribution of agents’ specific
threshold fractions, multiple equilibria of attitudes may occur or not. Yin (1998) shows
how a change in the distribution of thresholds may be induced by external events, while
Levy (2004) emphasizes the general forms of thresholds distribution that lead to multiple
equilibria of attitudes.

In a more extensive work, Brock and Durlauf (2001a, 2001b) developed many results
on discrete choice models in the presence of social interactions.

Weisbuch et al. (2001), and later Weisbuch and Staufer (2004), analyze the attitude
contagion of economic agents (to buy or not to buy a certain product) through simulations
of adapted models imported from Statistical Physics: Percolation model in Weisbuch
et al. (2001) and Voter model in Weisbuch and Staufer (2004). In both works, the
local conditional probabilities of the site states are coupled with a global observable of
the system configuration. In both works, self organized criticality was observed and
interpreted from a socioeconomic point of view.

Glaeser and Scheinkman (2003) provided a very good research review of interactions
based models until 2000. Models are presented and discussed in a more general framework.
The authors suggest three econometric approaches for measuring social interactions.

Gordon et al. (2005) and Nadal et al. (2005) studied the optimal strategy of a
monopolist that operates in a market whose consumers are susceptible to one another’s
choices - to buy or not to buy the monopolist’s product. In order to model the evolution
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of consumers’ discrete choices, the authors proposed a stochastic Ising type model in
which reservation prices of consumers depend on consumers peers’ choices. They discuss
the model properties in the case when consumers’ idiosyncrasies are random but fixed
and in the case when they are random and always updated over time. Assuming fixed
consumers’ idiosyncrasies, the authors show that the monopolist’s strategy is subjected
to the following phase transition: if the mean reservation price exceeds a critical price, or
the monopolist’s cost is lower than a critical cost, then the optimal monopolist’s strategy
jumps from a solution with a high price and a small number of buyers, to another one
with a low price and a large number of buyers. A sufficient condition for this regime
change is satisfied when social interactions among consumers is strong enough. Particulary
interesting in this regime change is that it may occur even when the resulting monopolist’s
demand is decreasing and continuous - not necessarily multi-valued.

Present paper. Our contribution was originally inspired by Becker’s duopoly model
(1991) and is related to the literature cited in this text. Of particular reference to our
paper are the works of Becker (1991), Brock and Durlauf (2001a, 2001b), Glaeser and
Scheinkman (2003), Yin (1998), Levy (2004), Gordon et al. (2005) and Nadal et al.
(2005). Especially, ideas about the way consumers are influenced by other consumers and
by product prices is similarly proposed by Gordon et al. (2005) and Nadal et al. (2005).

We outline now our new results and relate them to previous literature. As mentioned
before, we propose a model that supports and extends Becker’s explanation about the
demand behavior of two similar restaurants located across from each other. The model
concerns a duopoly market of heterogeneous interacting agents choosing one or the other
product variant. Through this model we show that demands for product variants be-
have discontinuously in prices whenever consumers are sufficiently homogeneous in their
intrinsic preferences between the two product variants (such as the two restaurants in
Becker’s case). In this context, we define the intrinsic preference of a consumer as the
difference in variants prices that would make the consumer be indifferent between the two
product variants, supposed that both product variants have the same level of aggregate
demand, i.e., supposed that both product variants are equally attractive from a social or
informational3 point of view.

The model also shows that, if the dispersion of consumers’ intrinsic preferences exceeds
a critical value, then the resulting demand functions are well-behaved, that is, decreasing
and continuous. This is also consistent with Grandmont’s (1987) and Kirman’s (1992)
considerations about the role of agents’ heterogeneity in economic models.

Interestingly enough, the high level of homogeneity in consumers’ intrinsic preferences,
necessary for the occurrence of phase transition of demand in our model, can be assured
by a high level of similarity of product variants (similarity of the restaurants in Becker’s
description). In fact, when both product variants are highly similar – ultimately identical –
a little price difference between them would lead a great majority of consumers to choose

3An agent may also choose the variant chosen by the majority because this choice may maximize the
agent’s posterior expected utility, given the information observed in the majority behavior (Bickhchandani
et al. (1992) and Orlean (1995)).
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the one with the lowest price, except in the case of social interactions in consumer’s
choices, which is excluded by the definition of consumers’ intrinsic preferences. The
rationale behind this is that nobody is willing to pay much more for good A than for
good B when A and B are highly similar – this becomes obvious when A and B are
identical. Consequently, when product variants are highly similar, all consumers’ intrinsic
preferences will be concentrated around zero. Thus, a high similarity of product variants
implies a high homogeneity (concentration) of consumers’ intrinsic preferences. Through
the lens of our model, the above implication leads to the interesting conclusion that
the asymmetry of demand, reported in Becker’s restaurant case, occurs not in spite of
products similarity, but it is in fact assured by it.

As another example of this, consider a duopoly consisting of two competing night clubs
in a rural area where there are no other night life options. Suppose the night clubs differ
from each other only by their spacial locations and prices. Assume also that consumers’
houses are uniformly distributed over the rural area. Under these circumstances, the
intrinsic preference of a consumer is the difference in prices between the two night clubs
that would compensate for the difference in the distance between each night club and
the consumer’s house - supposing both night clubs are equally demanded, that is, equally
attractive from a social point of view. In this example, it seems reasonable to assume
that short distances between night clubs imply low dispersions of consumers’ intrinsic
preferences, and vice-versa. According to our model, demand phase transition occurs
when the night clubs are located sufficiently close to each other; to the contrary, it is
avoided when the night clubs are located relatively faraway from each other.

This finding opens interesting perspectives for constructing and studying Hotelling’s
(1929) type models under the additional supposition that consumers are susceptible to
one another’s choices. Due to the influence of product locations in consumers’ intrinsic
preferences, producers may locate their products and set their prices in order to produce
or avoid a specific demand regime. Depending on the initial market share and the cost
functions of producers, one or the other location-price strategy may be optimal. In this
paper we propose such a location-price game and study its properties. We will still
comment the game results in this introduction.

Another important novelty of the model is the consideration of two set of consumers:
a time dependent set of demanding consumers and a larger, time independent set of all
potential consumers from which the former is selected (quite arbitrarily and not neces-
sarily at random). All potential consumers’ intrinsic preferences are initially distributed
according to a general probability distribution, which are supposed to be fixed over time.
We also assume that only demanding consumers demand one or the other product variant
at the respective demanding time. From these model definitions, we derive the stochastic
process of the market shares of both product variants, hereafter the market share pro-
cess. From the general structure of the market share process we deduce the following
result (Proposition 1): when the number of demanding consumers goes to infinity, then
the market share process converges to a well defined dynamical system, regardless of the
particular selections of demanding consumers under consideration. This result suggests
interesting socioeconomic implications and applications that we describe below.
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We investigate the market share process under the following selection of demanding
consumers. The set of demanding consumers are always composed by a fraction of habitual
consumers and a fraction of new consumers “refreshing the market” over time (model
parameter between 0 and 1). According to the result stated in the previous paragraph
(Proposition 1), the market share process will converge to the same dynamical system
regardless of the fraction new consumers under consideration. Such a kind of result is
discussed in Gordon et al. (2005) and Nadal et al. (2005) in the two particular cases when
the fraction of new consumers “refreshing the market” is 0 (fixed heterogeneity over time)
and when it is 1 (fluctuating heterogeneity over time).

Surprisingly enough, our limit result, that applies to any fraction of new consumers,
allows us also to deduce interesting and insightful relationships between the behavior of
the market share process and the fraction of new consumers being replaced over time in
the case when the number of demanding consumers is finite - instead of infinite. Based
on these relationships we explore the possibility of driving the distribution of attitudes
of a social system into a desired distribution of attitudes. A concrete application of it
concerns reduction of corruption in certain social systems. A little job-rotation among
system members may lead to substantial reduction of chronic corruption among them.

Another contribution of our work is a price-game for the study of duopoly markets
in the presence of social interactions of consumers. In the price-game, the initial market
shares as well the product locations play an important role in determining the game
equilibria. Product locations determine whether a demand phase transition will occur or
not. This is because the occurrence of phase transition in our approach depends on the
heterogeneity of consumers’ intrinsic preferences, which in its turn is influenced by the
products similarity - the products proximity as referred by Anderson et al. (1992) in the
context of product locations in a characteristic space of products. The price-game shows
that if product variants are sufficiently close to each other, then polarization of demand
will occur. We notice that this result provides a complementary explanation to Becker’s
restaurant case by recalling that the restaurants under consideration were supposed to be
similar and close to each other.

Moreover we propose a location-price game in which locations are part of the produc-
ers’ strategy. An equilibrium analysis of this game shows that product locations coincide
whenever the strength of social interactions among consumers is grater than a critical
value. By contrast, if the strength of social interactions is smaller than the critical value,
one restores Hotelling’s (1929) standard result, according to which the distance between
product variants is maximal.

In the next section we will define our formal model. Before doing so, we explain how
the paper content is presented throughout the sections.

In Section 2 we present a formal model of heterogeneous interacting consumers deciding
between two product variants.

In Section 3 we derive and study the market share process that results from the formal
model defined in Section 2. In this section we first present Proposition 1. Proposition 1
shows that the trajectories of the market share process converge to the trajectories of a
specific dynamical system when the number of consumers increases. Then, using Propo-
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sition 1, we analyze a model parametrization, according to which, a fraction of consumers
(model parameter) are permanently replaced by new consumers “refreshing the population
of consumers” over time. This gives rise to a kind of market share mix dynamics com-
posed of two well known types of stochastic dynamics in Physics: annealed and quenched
dynamics. We analyze such hybrid stochastic dynamics in the case of a finite number of
demanding consumers and find two respective patterns for the market share process: an
ergodic market share process,4 when the fraction of exchanging agents exceeds a critical
fraction, and a non-ergodic one, in the opposite case. We discus an application of this
process property and show how it can be used to drive the limit probability distribution
of the market share process into a desired probability distribution.

In Section 4 we study the demand functions of product variants through the analysis
of the dynamical system to which the market share process converges. In particular, we
stress two regimes of demands: one in which the heterogeneity of consumers’ preferences
is lower than a critical level and the other in which it is higher than this critical level.
Depending on whether low or high heterogeneity regime prevails, product demands will
be subject to a phase transition or not. Here we also show that the discontinuity points
of the market shares is determined by the initial market shares under consideration.

In Section 5 we show that the dispersion of consumers’ intrinsic preferences is an
increasing function of the distance between product variants. This result is presented in
Proposition 2. Based on Proposition 2 and an introduced price-game, we show that short
distances between product variants lead to polarization of demand. This is presented
in Proposition 3. In this proposition (Proposition 3) we show also that large distances
between product variants lead to the opposite result, namely, the market is symmetrically
shared among competitors. We also investigate a generalization of the price-game, the
location-price game, according to which players first locate their products and then play
the price-game mentioned before. An equilibrium analysis of the location-price game
shows that market players locate their products close to each other if the strength of
social interactions among consumers is grater than a critical value. To the contrary,
players locate products faraway from each other if the strength of social interactions among
consumers is smaller than this critical value. This will be the content of Proposition 4.

In Section 6 we present our final remarks. In Section 7 we provide an appendix
containing technical proofs of Proposition 1, Proposition 2 and Proposition 3.

2 The model

In this section we will present a duopoly model where consumers are susceptible to one
another’s decisions. Although our model covers several socioeconomic systems, where
agents face a binary choice, we focus on the exemple of two competing establishments de-
noted by E(−) and E(+), say, two fashionable night clubs or restaurants, charging entrance
prices p(−) and p(+), respectively.

4By an ergodic market share process we mean a stochastic market share process whose limit probability
distribution does depend on the process initial condition.
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We assume that at each time t = 0, 1, 2, . . ., say, weekends, N consumers, selected
from a set C of all potential consumers, |C| ≥ N ,5 decide between two establishments.6

We will denote by C
(N)
t the set of N consumers selected at time t. For example, if |C| =

100, N = 3 and consumers 5, 20 and 99 are selected at time t = 1 then C
(3)
1 = {5; 20; 99}.

The selection of C
(N)
t may be quite general, but the intrinsic preferences of consumers

belonging to C
(N)
t must be stochastically independent from each other (this should hold

for each time t ∈ {1, 2, 3 . . .}). This independence will be formalized later in (6), after we
have defined the intrinsic preferences of consumers.

Let us denote the number of consumers that choose establishment E(−) and E(+) at
time t by N

(−)
t and N

(+)
t respectively. Let us also assume that all potential consumers of

both establishments (all elements of C) are aware of the popularity of both establishments
in the recent past. In order to reflect this in our model, we assume that at each time t > 0,
each consumer i ∈ C knows the fractions N

(−)
t−1/N and N

(+)
t−1/N , where N

(−)
t−1/N = N̄

(−)
0

and N
(+)
t−1/N = N̄

(+)
0 (the initial market shares, N

(−)
0 and N̄

(+)
0 , are two model parameters

that do not vary with N).

Let us now present the preference structure of consumers. For t ≥ 1 and i ∈ C
(N)
t ,

let us denote by U
(i)
t (x) the utility of the consumer i in deciding for E(x), x ∈ {−, +} at

time t, and queueing if necessary. To focus our attention on the main phenomena we are
going to explain, we propose the following utility functions:

U
(i)
t (x)

def
= J

N
(x)
t−1

N
− p(x) + u(i)(x),

∀ t ∈ {1, 2, . . .}, ∀i ∈ C
(N)
t , ∀x ∈ {−, +},

(1)

where J , p(x) and u
(i)
t are explained below.

• J is a positive parameter that measures the level of social influence on the utilities
of consumers. This interpretation of J is clear from the fact that N

(x)
t−1/N expresses

the popularity of establishment E(x) in the immediate past(x ∈ {−, +}, t > 0). The
positivity of J follows Becker’s (1991) explanation about positive externalities in
consumers’ choices. As stated by him “. . .The motivation for this approach is the
recognition that restaurant eating, watching a game or play, attending a concert,. . .
are all social activities in which people consume a product or service together and
partly in public. . .”

• p(x) is positive and denotes the price charged by establishment E(x) (x ∈ {−, +}).
• u(i)(x) may be positive or negative and denotes a consumer’s i specific utility in-

crement in choosing establishment E(x) at time t. The quantity u(i)(x) can also
be interpreted as the negative value of transport cost incurred by consumer i by
visiting establishment E(x) (i ∈ C

(N)
t , x ∈ {−, +}, t ≥ 0).

5|C| denotes the number of elements of C.
6We suppose that the fraction of potential consumers that indeed decide between E(−) and E(+)

(instead of neither of them) is more or less constant over time. Accordingly, N does not depend on t.
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For t ≥ 1 and i ∈ C
(N)
t , let us denote by x

(i)
t ∈ {−, +} the decision of consumer i at

time t; that is, if x
(i)
t = x, then the consumer i goes to establishment E(x) (x ∈ {−, +}).

The utility maximization behavior implies that

U
(i)
t (x

(i)
t ) = max

x∈{−,+}
U

(i)
t (x) (2)

Decision x
(i)
t is uniquely determined by equation (2) when U

(i)
t (−) 6= U

(i)
t (+). Let us

assume x
(i)
t = + when U

(i)
t (−) = U

(i)
t (+). As we will see, this assumption does not

cause an asymmetry in the resulting aggregate demand, since in accordance with further
descriptions of the model, the event {U (i)

t (+) − U
(i)
t (−) = 0 for some i ∈ C

(N)
t } occurs

with probability zero.
Now, from the utility functions defined in (1) and utility maximization (2) it follows

for t ≥ 1 and i ∈ C
(N)
t :

x
(i)
t =

{
+1, if p(+)− p(−) ≤ θ(i) + Jm

(N)
t−1

−1, otherwise
(3)

where m
(N)
t−1

def
= [N

(+)
t−1 −N

(−)
t−1 ]/N and θ(i) def

= u(i)(+)− u(i)(−).

The quantity θ(i) can be interpreted as a consumer’s i reservation price difference
for E(+), free from bias in social influence. That is, θ(i) is the maximal price difference
p(+)−p(−) consumer i is willing to pay in order to acquire a unit of E(+) instead of E(−),

supposing there is no bias in social influence, i.e., supposing m
(N)
t−1 = 0. The value of θi,

which may be negative, zero, or positive, reveals an intrinsic preference of consumer i for
product variants E(−) and E(+).

In accordance with the above,

θ(i) will be called intrinsic preference of consumer i (i ∈ C)

Note that θ(i) is time independent and is defined for each potential consumer i ∈ C. We
anticipate that the dispersion of consumers’ intrinsic preferences, θ(i), i ∈ C, will play a
crucial role in determining if demands for establishments are continuous functions of their
prices or not.

2.1 Heterogeneity of consumers’ preferences

In the previous model definitions we introduced the consumers’ intrinsic preferences as
being consumers’ specific characteristics. Although these characteristics may differ among
consumers, we propose a certain statistical pattern for the ensemble of these characteris-
tics, which should be typical for the population of potential consumers under study.

In order to model a pattern in the variability of consumers’ preferences, we assume that
the consumers’ intrinsic preferences θ(i), i ∈ C, are independent and identically distributed
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random variables, each composed of a mean intrinsic preference θ and a consumer’s i
specific deviation −ξ(i) from this mean (i ∈ C), i.e.,

θ(i) = θ − ξ(i), i ∈ C (4)

where −ξ(i), i ∈ C, are independent and identically distributed random variables, which
may assume positive or negative values. The negative sign of −ξ(i) is due to convenience
in further exposition.

We assume that the random variables ξ(i), i ∈ C (without minus sign), have a cumu-
lative distribution function Φ whose derivative Φ′ satisfies the following properties:

1) Unimodality: Φ′ is increasing in (−∞, 0] and decreasing in [0,∞)
2) Symmetry: Φ′(z) = Φ′(|z|) ∀z ∈ R (5)

The symmetry of Φ′ implies that θ = E(θ(i)), i ∈ C, where E(θ(i)) denotes the expected
value of the random variable θ(i). This fact justifies the name “mean intrinsic preference”
given to θ. In our model, θ is a time independent parameter. It allows us to model
exogenous intervention like promotions, advertising, etc., that may shift the mean intrinsic
preference of consumers without affecting the deviations ξ(i), i ∈ C, from this mean.

With respect to assumptions (5), we note the following: i) we expect that a unimodal
distribution of ξi, i ∈ C, would be a good first order approximation of a real distribution;
ii) the symmetry of Φ′ is assumed in order to simplify our explanation. As we will see,
analogous results to those that we will present can be derived under even milder conditions
than (5).

2.2 Selection of consumers

As described before, our model assumes that at each time t, a set C
(N)
t of “selected

consumers” choose between the two establishments, either E(−) or E(+). Consumers
from C −C

(N)
t choose neither of them at time t. In this section we formalize and discuss

the precondition imposed on the selection of consumer sets C
(N)
t , t = 1, 2, . . .

First of all, we notice that every restriction imposed on the selection of C
(N)
1 , C

(N)
2 , . . .,

imposes ultimately a restriction on (time-dependent) consumers’ preferences. To see this,
note that each consumer i faces, in fact, three choices: either 1) E(+), 2) E(−) or 3) nither

of them. Thus, a consumer i, who does not belong to C
(N)
t , prefers 3) instead of 1) or

2) at time t. As we will see, we do not impose many restrictions on the time dependent
preferences of those consumers (who prefer to go somewhere else rather than E(+) or E(−)

at time t). This is in fact the reason why we model the set of consumers who prefer

at least one of both E(+) or E(−) to neither of them at time t with a generic set C
(N)
t

(t = 1, 2, . . .).

The only precondition we imposed on the set of selected consumers C
(N)
t is that the

intrinsic preferences of the consumers belonging to C
(N)
t should be stochastically indepen-

dent from one another. Since θ(i) = θ̄ + ξ(i) and since θ̄ is a constant, this independence
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can be formalized as follows. For each (fixed) time t ∈ {0, 1, 2, . . .},
ξ(i), i ∈ C

(N)
t are independent random variables (6)

Note that the independence above does not imply that ξ(i), i ∈ C
(N)
s and ξ(i), i ∈ C

(N)
t are

independent random variables for s 6= t. In fact this independence does not hold when
C

(N)
s and C

(N)
t intercept.

We observe that condition (6) is satisfied when the selection of C
(N)
t is independent on

the configuration of intrinsic preferences θ(i), i ∈ C. Since θ(i) = θ̄+ξ(i), this independence
could also be formalized as follows: for any time t and any subset C of N elements of
C = {1, 2, . . . , |C|} (N ≤ |C|), it holds that

P
(
C

(N)
t = C

∣∣∣ ξ(1), . . . , ξ|C|
)

= P
(
C

(N)
t = C

)
(7)

Condition (7) states that the probability of selecting a particular subset C from the set
of all potential consumers C at time t does not depend on the configuration of consumers’
intrinsic preferences, solely determined by (ξ(1), ξ(1), . . . ξ(|C|)).

Roughly speaking, condition (7) imposes the following restriction on consumers’ pref-
erences: consumers’ (random) preference orders restricted to the two choices, i) “E(−) or
E(+)” and ii) “neither of them”, should be independent of consumers’ (random) prefer-
ence orders restricted to the two choices, i) E(−) and ii) E(+). This implies, for example,

that the probability of event “i ∈ C
(N)
t ” does not change if we know that i is more likely

to prefer one specific side, say E(+), that is, if we know that ξ(i) is small (see (3) and (4)).
In Section 3 we will use condition (6), which follows from (7), to deduce some inter-

esting properties for the emerging demand behavior of E(+) and E(−). In particular, the
formulation of the sets of consumers who choose either E(+) or E(−) at time t = 1, 2, . . . in
terms of generic sets C

(N)
1 , C

(N)
2 , . . ., will enable us to deduce different demand behaviors

depending on different structures of consumers’ preferences. These structures could be
of the following three types: i) C

(N)
t = C

(N)
0 , for all t = 1, 2, . . ., in this case, consumers’

preferences do not change over time; ii) C
(N)
s ∩ C

(N)
t = ∅, for s 6= t, in this case, con-

sumers’ preferences change completely over time; and iii) C
(N)
s and C

(N)
t overlap partially

for some s 6= t, in this case, consumers’ preferences change partially over time.
We will come back to this point in the next section.

3 The market share process

In this section we will present a description of the market share process, that is, the two-
dimensional stochastic process (N

(−)
t /N, N

(+)
t /N). Recall that N

(−)
t /N and N

(+)
t /N are

the respective market shares of E(−) and E(+) at time t. We will also analyze the asymp-
totical behavior of the market share process when N (number of consumers) increases.

In order to allow us an easy treatment of the market share processes, let us describe
it through the equivalent stochastic process of difference of demand fractions:

m
(N)
t = (N

(+)
t −N

(−)
t )/N (8)
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That (m
(N)
t ) is equivalent to the two-dimensional market share process (N

(−)
t /N, N

(+)
t /N),

is due to the fact that: Nt(+1)/N + Nt(−1))/N = 1, ∀t ≥ 0. In fact, the latter relation

implies that the value of m
(N)
t follows from the values of N

(−)
t /N and N

(+)
t /N and vice-

versa.
Now, by construction, the difference of demand fractions equals the arithmetic mean

of decisions:

m
(N)
t =

1

N

∑

i∈C
(N)
t

x
(i)
t (9)

Relationships (3), (4) and (9) altogether allow us to present stochastic process (m
(N)
t )

in the following way. First of all, generate |C| independent random variables ξ(1), ξ(2), . . . ξ(|C|)

with distribution function Φ; set m0
def
= N̄

(+)
0 − N̄

(−)
0

7. For t > 0, determined m
(N)
t by the

following steps:

1. Choose set C
(N)
t , of N consumers from the population C = {1, 2, . . . , |C|} in accor-

dance with the specified selection rule.

2. Use the values of m
(N)
t−1 and ξ(i), i ∈ C

(N)
t , to define

x
(i)
t =

{
+1, if ξ(i) ≤ Jm

(N)
t−1 − h

−1, otherwise
, ∀i ∈ C

(N)
t

where h
def
= p(+1)− p(−1)− θ̄.

3. Set m
(N)
t =

∑
i∈C

(N)
t

x
(i)
t

N

Large population dynamics. Steps 1), 2) and 3) above describe a family of stochastic
processes. Each stochastic process belonging to this family is determined by the sequence
of sets C

(N)
t t ≥ 1 under consideration. Although we do not specify how sets C

(N)
1 , C

(N)
2 , . . .

are selected (the selection rule of consumers), the asymptotical behavior of these processes
will be the same: all stochastic processes belonging to this family will converge to the
following dynamical system (when the number of consumers N increases)

mt = 2Φ(Jmt−1 − h)− 1, t = 1, 2, . . . (10)

where we recall that Φ is the cumulative probability function of ξ1.
The next proposition formalizes this result.

Proposition 1. Let ξ(i), i = 1, 2, . . . be identically distributed random variables defined on
a common probability space with a common continuous cumulative distribution function Φ.
Let C

(N)
t be a sequence of sets of positive integers (indexed by t and N) where |C(N)

t | = N

7N̄
(−)
0 and N̄

(+)
0 are parameters which do not depend on N .

13



for all N ≥ 1, t ≥ 1. Assume that, for each N ≥ 1, t ≥ 1: ξ(i), i ∈ C
(N)
t are independent

random variables. If for all N ≥ 1, m
(N)
0 = m0, and for t > 0, m

(N)
t is recursively defined

by the steps 1)- 3) of Section 3, then

∀t ≥ 0 : lim
N→∞

∣∣ m
(N)
t −mt

∣∣ = 0 almost surely , (11)

where mt denotes the t−th iteration of mapping m 7→ 2Φ(Jm− h)− 1, starting from m0,
that is, mt = 2Φ(Jmt−1 − h)− 1 for t > 0.

The proof of Proposition 1 is presented in the Appendix.

Proposition 1 states that the trajectories of stochastic process (m
(N)
t ) converge point-

wise (that is, for each t = 0, 1, 2 . . .) almost surely to the trajectories of dynamical system
(mt) when the number of consumers goes to infinity.

An important part of this paper is devoted to the study of dynamical system (mt)

that is a proxy for the large population dynamics of (m
(N)
t ). However, before we proceed

with this study, it is worth analyzing the behavior of stochastic process (m
(N)
t ) when N ,

the number of consumers, is finite.

Exchanging agents. Although Proposition 1 formalizes the behavior of process (m
(N)
t )

when the number of consumers goes to infinity, its degree of generality (valid for a large

class of sequences of sets C
(N)
t , t ≥ 1, N ≥ 1), enables us to derive some interesting

conclusions about (m
(N)
t ) in the case when N is finite.

In order to present these conclusions let us recall that the random variables ξ(i), i ∈ C
do not change their values over time.

Although ξ(i), i ∈ C, do not change over time, the amount of effective fixed and
effective varying ξ(i)’s in the system will depend on the sequence of sets C

(N)
1 , C

(N)
2 , . . .

If, for example, the sets of consumers who decides either for E(+) or E(−) are always the
same (C

(N)
t = C

(N)
0 , ∀t), then we can assume that consumers’ preferences do not change

over time. This corresponds in the literature to the random utility models of MacFaden
(1974) and Manski (1977). On the other hand, if sets C

(N)
1 , C

(N)
2 , . . . change completely

over time (C
(N)
t ∩ C

(N)
s = ∅, ∀s 6= t), then the process behaves as if agents were fixed,

but with varying preferences over time. This corresponds in the literature to Thurstone’s
(1927) random utility model.

Gordon et al. (2005) and Nadal et al. (2005) show the correspondence of these two
particular cases (fixed preferences and changing preferences over time) to two respective
types of models in Statistical Physics: models with quenched disorder and models with
annealed disorder. As mentioned before, these two types of models correspond in our
model to two particular sequences of selected sets of agents. Besides these two particular
cases, there are other possibilities covered by our model.

This fact and its applications in social systems make the discussion of the following
selection scheme important.

Let C = {1, 2, 3 . . .} and for each t ≥ 0, set

C
(N)
t =

[ {1, 2, . . . , N} −Old
(αN)
t

] ∪New
(αN)
t (12)
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where Old
(αN)
t is a set of [αN ] elements, 0 ≤ α ≤ 1, chosen at random from {1, 2, . . . , N},

and New
(αN)
t is a set of [αN ] elements selected from {N + 1, N + 2, . . .} with New

(αN)
s ∩

New
(αN)
t = ∅ for s 6= t. Above [αN ]

def
= Min{k ∈ Z : αN ≤ k}.

In definition (12) we also assume that the procedure of selection of New
(αN)
t , t =

0, 1, 2 . . . does not depend on ξ(i), i ∈ C. We do not specify this procedure because it is

not relevant for the stochastic update of (m
(N)
t ).8

Now consider the following three ranges of values of α (fraction of new agents):

When α = 0, then C
(N)
t = {1, 2, . . . , N} for all t = 0, 1, 2 . . . In this case there is no ran-

domness over time; that is, all m
(N)
t , t = 1, 2, . . . are solely determined by the initial

value of m0 and the (fixed) values of ξ(1), ξ(2), . . . ξ(N). Here, agents’ preferences are
fixed.

When α = 1, then C
(N)
s ∩ C

(N)
t = ∅ for s 6= t. In this case the consumers visiting the

establishments have never visited them before. Process (m
(N)
t ) has a stochastic time

update and is Markovian. Here, agents’ preferences change completely over time.

When 0 < α < 1, then the establishments are visited by a positive fraction α of new
consumers and a positive fraction 1−α of old consumers. Here, agents’ preferences
change partially over time. Of the three cases, this case comes the closest to real
life.

Our interest in (12) focuses on a relationship between the ergodicity of stochastic

process (m
(N)
t ) and a range of values of α. Under some conditions it will be shown that

(m
(N)
t ) is ergodic9 if and only if α is grater than a critical value α∗.
In order to discus this relationship, we first observe that stochastic process (m

(N)
t )

converges to dynamical system (mt) for all values of α ∈ [0, 1]. This convergence result

follows immediately from Proposition 1, since according to (12), variables ξ(i), i ∈ C
(N)
t

are independent random variables.
Based on convergence (m

(N)
t ) → (mt), which holds for any value of α ∈ [0, 1], we

will discuss two implications. To present these implications we consider the following
representation of stochastic process (m

(N)
t ):10

m
(N)
t = 2Φ

(t)
N (Jm

(N)
t−1 − h)− 1 (13)

8The transition probabilities of stochastic process (m(N)
t ) do not depend on the specific procedure of

selection of New
(αN)
t , provided that this procedure does not depend on ξ(i), i ∈ C. One possible selection

scheme is: New
(αN)
t = {(N + t[αN ]) + 1, (N + t[αN ]) + 2, . . . , (N + t[αN ]) + [αN ]}, t = 0, 1, 2 . . .

9We say that (m(N)
t ) is ergodic if the limit probability distribution of m

(N)
t (when t → ∞) does not

depend on the initial value m
(N)
0 .

10That (13) holds, follows directly from the equalities m
(N)
t = (1/N)

∑
i∈C

(N)
t

x
(i)
t = (N (+)

t −N
(−)
t )/N =

2[N (+)
t /N ]− 1 and from the fact that x

(i)
t = 1 if, and only if ξ(i) < Jm

(N)
t−1 − h (see step 2 of the update

description of (m(N)
t )).
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Figure 1: Convergence of sequence (m
(N)
t )t≥0 (starting from m

(N)
0 = m0) to a fix point of

mapping m → gN(m)
def
= 2Φ

(0)
N (Jm− h)− 1 (step function). This fix point of m → gN(m)

is close to M+, where M+ is a fix point of m → g(m)
def
= 2Φ(Jm − h) − 1 (continuous

function).

where Φ
(t)
N is the empirical distribution of random variables ξ(i), i ∈ C

(N)
t , that is

Φ
(t)
N (x)

def
=

1

N

∑

i∈C
(N)
t

I{ξ(i)<x}, where I{ξ(i)<x}
def
=

{
1 if ξ(i) < x
0 otherwise

We also assume that dynamical system (mt) (mt = 2Φ(Jmt−1−h)−1) has two stable
equilibria, M+ and M− (see Figure 1).11 Taking into account that, for each fixed t, the

sequence of functions {x 7→ Φ
(t)
N (x) : N = 1, 2, . . .} converges uniformly, almost surely to

the cumulative distribution function x 7→ Φ(x) (see (38) in Proof of Proposition 1 in the
Appendix), we have the following implications.

If the number of agents N is large (not necessarily infinite) and α = 0, then (m
(N)
t )

has no randomness over time, and (m
(N)
t ) is attracted to a neighborhood either of M+ or

M− where it remains locked forever. In fact, if N is large, then the graph of Φ
(0)
N is close

to the graph of Φ, and if α = 0, then C
(N)
t = C

(N)
0 , t = 1, 2, . . ., that is Φ

(t)
N = Φ

(0)
N ∼ Φ,

t = 1, 2, . . . accordingly m
(N)
t+1 = 2Φ

(0)
N (Jm

(N)
t −h)− 1, and (m

(N)
t ) converges to a fix point

of m 7→ 2Φ
(0)
N (Jm − h) − 1, which is close either to M+ or M− (see Figure 1). If we

now allow α to be a little larger than zero, but still relatively small, then just a few ξ(i)’s

11The existence of two stable equilibria, M+ and M−, can be deduced from a low dispersion of agents’
preferences, that is, low dispersion ξ(i)’s.
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(agents’ preferences) will be randomly replaced over time. Under this new value of α, it is

natural to suppose that after a certain relaxing time, say t∗, the values of m
(N)
t∗ ,m

(N)
t∗+1, . . .

will also remain locked within a neighborhood either of M+ or M− forever despite process
randomness over time.

Now, if N is finite and α = 1 (α = 1 means that all agents’ preferences are replaced

over time), then (m
(N)
t ) has only one limit probability distribution (when t →∞). If we

also suppose that N is relatively large (but still finite), then the only limit probability

distribution of (m
(N)
t ) is close to a bimodal probability distribution, where the modes are

close to M− and M+ respectively. As observed by Kirman (1993), in such a case there is

no deterministic equilibrium of (m
(N)
t ) (when t →∞), but a limit probability distribution

of (m
(N)
t ) that is bimodal.

Let us summarize the two implications:

1. If N is relatively large (not necessarily infinite) and α is sufficiently small (not

necessarily zero), then (m
(N)
t ) is attracted to a neighborhood either of M− or of

M+ where it remains locked forever. The limit probability distribution of (m
(N)
t )

depends on the initial value of m
(N)
0 . In this case, (m

(N)
t ) is not ergodic, given the

random parameters ξ(1), ξ(2),. . . ξ(N).

2. If N is finite, but relatively large, and α = 1, then (m
(N)
t ) has a unique limit

distribution that does not depend on the initial value of m
(N)
0 . The limit probability

distribution of (m
(N)
t ) is bimodal and the two modes are close to M− and M+

respectively. In this case, (m
(N)
t ) is ergodic.

The above discussion leads to the following conjecture: if N is large enough and
dynamical system (mt) has more than one stable equilibrium, then there will be a critical

fraction α
(N)
∗ ∈ [0, 1] such that the stochastic process (m

(N)
t ), conditioned on random

variables ξ(1), ξ(2), . . . , ξ(N), is not ergodic if α ≤ α
(N)
∗ and ergodic if α > α

(N)
∗ . Although

the critical fraction α
(N)
∗ is random (it depends on random variables ξ(1), ξ(2), . . . , ξ(N)), it

is easy to see that α
(N)
∗ will converge to a fraction α∗(Φ) that depends only on distribution

function Φ and parameters J and h. Although α∗(Φ) depends on parameters J and h
too, we can incorporate these parameters in the distribution function Φ. In this case, Φ
would denote the distribution function of (ξ(1) + h)/J , instead of ξ(1) (see step 2 of the

time update of (m
(N)
t )).

One suggestive application of the existence of α∗(Φ) is related to the possibility of

moving the fraction α, above and below α∗(Φ) at different times, in order to set (m
(N)
t )

free to scape from an undesired region and to lock it in a desired one. Suppose for
example, that a governmental institution, divided into many departments, exhibits a high
level of corruption among their members. Each member opts either to be corrupt (−) or
not to be corrupt (+) according to social influences among department members12 and
the corresponding prices for the two possible attitudes: p(−) = risk of being caught and

12We assume that social interactions occurs among members of the same department, only.
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punished, not to mention losses in moral integrity, and p(+) = the amount of money that
will not be cashed. A possible way to move the institution away from a high level of
corruption to a low level of corruption involves not only regulations on prices p(−), p(+),
but also regulations on a fraction of members being exchanged across departments, that
is, job rotation across departments. In this context, each department could be viewed
as a separate market offering two products,13 where the fraction of job rotations across
departments would work asymptotically as a fraction of new agents being exchanged in all
markets. An efficient14 fraction of job-rotation across departments (about α∗(Φ)) could
be implemented in order to induce phase transitions in all departments. Once this passage
is made, one could stop job rotation (α ↓ 0) in order to lock the process in the desired
state of low level of corruption.

The above discussion motivates several directions of research. First, one could inves-
tigate the dependence between α∗(Φ) and Φ. Second, one could study the probability

distribution of time T process (m
(N)
t ) spends on its two meta-stable states (from which

the respective expected values are close to M− and M+). A natural supposition is that
the expected time Eα(T ) is a decreasing function of the fraction of exchanging agents α,
where Eα(T ) ↑ ∞ when α ↓ α∗(Φ). It would be interesting to investigate how fast Eα(T )
decreases when α increases in (α∗(Φ), 1]. Investigating this would be important as long
as we want to control the expected waiting time for the occurrence of phase transition in
the system.

4 Demand equilibria

In the preceding section we described how the market shares of both establishments evolve
in time. This was expressed by stochastic process (m

(N)
t ) and by the dynamical system

(mt) that approaches (m
(N)
t ) in the case where the number of consumers N is large.

In this section we proceed with the study of the equilibria of dynamical systems (mt)
as well as the economic interpretation of it. To start with, recall that mt is the t−th
interaction of m 7→ 2Φ(Jm− h)− 1, that is

mt = 2Φ(Jmt−1 − h)− 1, t = 1, 2, . . . (14)

where Φ is the cumulative probability distribution function of ξ1.
Under the supposition that Φ satisfies (5), the graph of m 7→ 2Φ(Jm − h) − 1 has

an S−shape as indicated in Figure 2. In Figure 2 the horizontal axis depicts m and the
curves represent the graph of m 7→ 2Φ(Jm − h) − 1 for different values of parameters
Φ′(0)−1, J and h. Below we comment the Curves a) - f):

13E(−) = additional income (due to corruption) × E(+) = job without risk (due to a honest attitude).
14An excessive fraction of job rotation could damage the institution functionality.
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a) This curve correspond to case where Φ′(0)−1 ≥ 2J .
In this case, (mt) has just one global stable equilibrium M̄(h).
Increasing h translates the curve m 7→ 2Φ(Jm− h)− 1 from the left
to the right, and the global equilibrium M̄(h) decreases.

b) - f) These last five curves correspond to cases where Φ′(0)−1 < 2J .
Each curve relates to a specific range of values of h. As before, increasing h
translates the curve m 7→ 2Φ(Jm− h)− 1 from the left to the right as shown in
b) - f). Depending on the value of h, dynamical system (mt) has
at least one and at most three equilibria M−(h), M(h) and M+(h), where M−(h)
and M+(h) are stable equilibria and M(h) is an unstable equilibrium. Curves c)
and e) correspond to special values of h, namely h = −h∗ and h = h∗ respectively.
The value of h∗ is uniquely determined by the following equation system -
to be solved in (h∗,M∗) ∈ [0,∞)2: M∗ = 2Φ(JM∗ − h∗)− 1, 1 = 2Φ′(JM∗ − h∗)J .

We stress the fact that the equilibria mentioned above depend on parameter h. From
the relationships explained in Figure 2 we can deduce the functions that assign the values
of h to the equilibria of dynamical system (mt). Figure 3 shows the unique global stable
equilibrium M̄(h) of (mt) as a function of h in the case Φ′(0)−1 ≥ 2J . Figure 4 shows the
equilibria M−(h), M(h) and M+(h) of (mt) as a function of h in the case Φ′(0)−1 < 2J .

In what follows we will discuss and interpret the stability properties of equilibria M̄(h),
M−(h), M(h) and M+(h). For this discussion we assumed in (5) that Φ′ is symmetric
around zero. The symmetry of Φ′ ensures the existence of two regimes: i) Φ′(0)−1 ≥ 2J ,
where only one global stable equilibrium exists and ii) Φ′(0)−1 < 2J , where multiple
equilibria may exist for the same value of h. At this point it is worth mentioning that our
results also apply if we relax the symmetry assumption imposed on Φ′. If for example, Φ′

is no longer symmetric around zero, but still has only one pick at zero, then the graphs of
mapping m 7→ 2Φ(Jm− h)− 1 would also display S−shapes as those of Figure 2. Thus,
assuming a nonsymmetric function Φ′, that has only one pick at zero, it would not change
our results from a qualitative point of view. For the sake of simplicity in exposition we
assume that Φ′ is symmetric around zero.

The limit difference of demand fractions. According to Proposition 1, we can
approximate the trajectories of (m

(N)
t ) to the trajectories of (mt) when the number of

consumers N is large. This implies that limt→∞ mt may be viewed as a time-stable
difference of demand fractions when N is large; to be precise: if the difference of demand
fractions starts from some m

(N)
0 = m0 and if we wait for a given relaxation time until we

see that m
(N)
t is more or less constant in time, then the value of m

(N)
t will be close to

G(m0; h)
def
= lim

t→∞
gt(m0; h) (15)

where gt(m0; h) denotes the t − th iteration of mapping m 7→ 2Φ(Jm − h) − 1 starting
from m0. We will therefore call G(m0; h)

the limit difference of demand fractions
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Figure 2: Generic shapes of the graph of m 7→ g(m; h)
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M

Figure 3: Case Φ′(0)−1 ≥ 2J . Generic shape of h 7→ M̄(h) that represents the dependence
on h of the unique stable equilibrium of mt+1 = 2Φ(Jmt − h)− 1.
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Figure 4: Case Φ′(0)−1 < 2J . Generic shapes of functions h 7→ M+(h), h 7→ M(h) and
h 7→ M−(h) that represent the dependence on h of the equilibria of mt+1 = 2Φ(Jmt−h)−1.
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It should be clear that G(m0; h) corresponds to exactly one fix point of m 7→ 2Φ(Jm−
h)−1. Depending on m0, h, Φ(0) and J , the limit difference of demand fractions G(m0; h)
will be either M̄(h), M−(h), M(h) or M+(h) as indicated in Figure 2.15

Heterogeneity and discontinuity of demands. The role of initial conditions.
As suggested in Figure 2, the relationships between Φ′(0)−1 and J play an important
role in determining if the limit difference of demand fractions G(m0; h) is discontinuous
in h or not. If Φ′(0)−1 ≥ 2J , then G(m0; h) = M̄(h) where M̄(h) is the unique global
stable equilibrium of (mt), which is continuous and decreasing in h as shown in Figure
3. If Φ′(0)−1 < 2J , then the limit difference of demand fractions G(m0; h) is no longer
continuous in h, where the discontinuity point of h 7→ G(m0; h) depends on the initial
difference of demand fraction m0. To see this, fix the initial value m0 and observe the
limit G(m0; h) = limt→∞ mt for different values of h. Suppose, for example, that Φ(0)−1,
J and h are given as in d) of Figure 2. Assume initially M(h) < m0. Increasing h moves
the curve h 7→ 2(Jm−h)−1 as well as the unstable equilibrium M(h) from the left to the
right. As long as M(h) < m0, it holds that G(m0; h) = M+(h). As soon as M(h) exceeds
m0, the limit difference of demand fractions G(m0; h) jumps from M+(h) to from M−(h).
Figures 5, 6 and 7 show discontinuity points of h 7→ G(m0; h) for m0 > M∗, m0 < −M∗
and |m0| ≤ M∗ respectively.

In order to interpret inequalities Φ′(0)−1 ≥ 2J and Φ′(0)−1 < 2J that lead to two
respective regimes of the limit difference of demand fractions (continuous and discon-
tinuous) let Φ be parameterized as follows: Φ(x) = Φ1(x/σ), where Φ1 is a cumulative
probability distribution function that has finite variance and satisfies (5). For such a
parametric Φ, the quantity Φ′(0)−1 is proportional to the standard deviation of Φ. For
example, if Φ(x) = Φ1(x/σ), where Φ1 is the cumulative probability distribution function
of the standard normal distribution, then the standard deviation of Φ is (2π)−1/2∗Φ′(0)−1.

Supposing such a suitable parametric form for Φ, we can interpret Φ′(0)−1 as a measure
for the heterogeneity of consumers’ intrinsic preferences. Therefore, we will say that

Φ′(0)−1 is the heterogeneity of consumers’ intrinsic preferences.16

According to the interpretations of Φ(0)−1 and J we emphasize two regimes of demand:
i) high heterogeneity regime where Φ′(0)−1 ≥ 2J and ii) low heterogeneity regime where
Φ′(0)−1 < 2J .

5 Similarity of products, polarization and strategies

In the previous sections we explained the existence of two phases of demand under low
heterogeneity of consumers’ intrinsic preferences. In this section we will show that the

15Although G(m0;h) depends on parameters m0, h, Φ(0) and J , we suppressed Φ(0) and J in order to
stress the dependence between G(m0; h) and (m0; h).

16It should be mentioned that this interpretation is valid for the case where Φ is parameterized by
Φ(x) = Φ1(x/σ). However, in general there is no simple correspondence between Φ′(0)−1 and the
standard deviation of Φ.
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Figure 5: Graph of h 7→ G(m0; h)
def
= limt→∞gt(m0; h) for m0 ∈ (M∗, 1).
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Figure 6: Graph of h 7→ G(m0; h)
def
= limt→∞gt(m0; h) for m0 ∈ (−1,−M∗).
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Figure 7: Graph of h 7→ G(m0; h)
def
= limt→∞gt(m0; h) for m0 ∈ [−M∗,M∗].

similarity of products will determine the low heterogeneity regime. This means that
polarization of demand will be assured by proximity of products. This is a particulary
interesting result if we contrast it with Becker’s (1991) restaurant case, where demand
polarization was observed in a duopoly of two similar product variants (the restaurants).
In this section we will also analyze a dynamic game of price competition suggesting that
demand will be polarized and locked at one specific player’s side whenever products are
sufficiently similar to each other.

We will also propose a game generalization where the product locations will be part of
players’ strategies. A Nash equilibrium of this game suggests that producers will locate
their products close to each other (increasing their similarities) whenever the strength
of social susceptibility among consumers is greater than a critical value. By contrast,
when the strength of social susceptibility of consumers is smaller than this critical value
one restores Hotelling’s (1929) standard result according to which the distance between
product variants is maximal.

Similarity of products and phase transition. Becker developed a model to explain
why a duopoly of two similar restaurants (in prices and food quality) could be charac-
terized by an excess demand of one and an excess supply of the other. His description
of the under-demanded restaurant goes as follows: “. . .Almost directly across the street is
another seafood restaurant with comparable food, slightly higher prices, and similar service
and other amenities. Yet this restaurant has many empty seats most of the time. . .”

We claim that such a similarity of product variants, as observed in Becker’s analysis,
produces a low heterogeneity regime of consumers’ intrinsic preferences, according to
which demand polarization occurs.

In order to clarify the causality between similarity of product variants and low het-
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erogeneity regime of consumers’ intrinsic preferences, recall that θ(i) can be viewed as a
consumer’s i intrinsic reservation price difference. That is, under the supposition that both
establishments are equally demanded, consumer i will choose E(+) if p(+)− p(−) < θ(i),
and E(−) if p(+) − p(−) > θ(i). Now, if both product variants are highly similar (ul-
timately identical), it is natural to suppose that the reservation price difference of each
consumer i is close to zero, when both product variants are equally demanded, that is,
θ(i) ' 0, i ∈ C. The rationale behind this is that nobody is willing to pay much more for
good E(−) than for good E(+) – and vice-versa – when E(−) and E(+) are highly similar.
This becomes obvious when E(−) and E(+) are identical.

Now, if random variables θ(i) ' 0, i ∈ C, are concentrated around zero, then they are
also characterized by a low dispersion (low Φ(0)−1). Thus, if the two product variants
are highly similar, it is natural to assume that low heterogeneity regime will prevail
(Φ(0)−1 < 2J).

We stress that our model can be interpreted as a Hotelling’s (1929) type model. From
this point of view, the additional utilities ui(−) and ui(+) introduced in (1) may be
viewed as decreasing functions of the distances between consumer i and the location of
product variants E(−) and E(+) respectively. The smaller the distance between E(−) and
E(+) (that is, the more similar are product variants), the lower will be the dispersion of
consumers’ intrinsic preferences θ(i) = ui(+) − ui(−), i ∈ C. As soon as the distance
between E(−) and E(+) is smaller than a critical distance, then the demand system goes
into low heterogeneity regime. In order to see this in a concrete example, assume that
consumers’ addresses are random variable l(i), i ∈ C, uniformly distributed along a circle
of circumference 1.17 Assume that E(−) and E(+) differ only in their spatial locations, l(−)

and l(+), on the circle. Suppose that the transportation cost incurred by consumer i by
visiting point l(x) – where product E(x) is delivered – is

ν · [d(l(i), l(x))]2

where ν is a non negative constant and d(l(i), l(x)) is the shortest distance (geodesic)
between l(i) and l(x) along the circle (x ∈ {−, +}).

Let us assume that the additional utility u(i)(x) of consumer i (given in (1)) corres-
ponds to the negative value of consumer’s i transportation cost incurred with consumption
of E(x) (x ∈ {−, +}). Accordingly, the intrinsic preference of consumer i is

θ(i) = u(i)(+)− u(i)(−) =
[− ν · [d(l(i), l(+))]2

]− [− ν · [d(l(i), l(−))]2
]

(16)

Given (16), we can derive the probability distribution of θ(i). This is presented in the
following proposition.

Proposition 2. Let l(−) and l(+) be fixed points (product locations) on a circle of circum-
ference 1. Let l(i), i ∈ C, be independent and uniformly distributed random points along
the circle (consumers’ addresses). Let d(l(i), l(−)), d(l(i), l(+)) and d (d = d(l(−), l(+)))

17The proposed circular address space is chosen for convenience in presentation. The same qualitative
results can be achieved assuming that the address space is the unit interval.
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denote the shortest distances (geodesics) between l(i) and l(−), between l(i) and l(+), and
between l(−) and l(+) respectively. If θ(i) is defined by (16), then θ(i), i ∈ C, are in-
dependent and identically distributed random variable satisfying: θ(i) = θ − ξ(i), i ∈ C,
where

θ = 0 and ξ(i) is uniformly distribuited on the interval [−δ, δ], with δ = νd(1− d) (17)

According to (17), the cumulative distribution function Φ of ξ(i) is defined as follows:
Φ(z) is identical to zero for z ≤ −δ, it is increasing and linear for −δ ≤ z ≤ δ, and
identical to 1 for z ≥ δ.

The of Proposition 2 is presented in the Appendix.

Note that distance d = d(l(−), l(+)) ranges between 0 and 1/2. This is because l(−)

and l(+) are points on a circle of circumference 1. Accordingly, the dispersion of ξ(i)’s,
expressed by δ = νd(1 − d), is an increasing function of d (0 ≤ d ≤ 1/2) – the distance
between product variants.

We recall that Φ was supposed to be differentiable (see (5)). Although Φ derived in
Proposition 2 is not differentiable at −δ and δ, the S−shape of m 7→ 2Φ(Jm − h) − 1
allows us to derive analogous results about the existence and stability of the equilibria of
mt = 2Φ(Jmt−1−h)−1. Figure 8 illustrates a case in which limt→∞ mt = 1. In this case,

δ < J , |h| < h∗
def
= J − δ, and system mt = 2Φ(Jmt−1 − h) − 1 has two stable equilibria

(low heterogeneity regime). If δ > J , then system mt = 2Φ(Jmt−1 − h)− 1 has only one
stable equilibrium (high heterogeneity regime).

Since δ = νd(1 − d), low heterogeneity regime is assured whenever νd(1 − d) < J ,
that is, whenever the distance d between product variants is sufficiently small. More
specifically, for J ≤ ν/4, low heterogeneity regime is assured if

d = d(l(−), l(+)) < (1−
√

1− 4J/ν)/2

If J > ν/4, low heterogeneity regime is always assured regardless of the value of d(l(−), l(+)).

Strategic interaction of producers. As demonstrated above, proximity of products
leads to demand polarization. This means that demand tends to be polarized at one
producer’s side - supposed that prices remain fixed over time. If the under-demanded
establishment, say E(−), does not change its price, it seems clear that the over-demanded
one, E(+), will not raise its price beyond a discontinuity price which depends on the fixed
price charged by E(−). This would explain the stability of demand polarization observed
in Becker’s restaurant case, provided that E(−) remains passive over time.

At this point the following question arises: why should the under-demanded estab-
lishment, E(−), remain passive over time? Finally, E(−) could set a low price and polarize
demand at his side.

The above question suggests that price competition among similar producers leads
to instability of market shares - polarization would change from one side to the other
as a consequence of price competition. In what follows we show that this is not the
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g(m;h)
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M (h)- M  (h)+M(h)

Figure 8: Generic shape of the graph of m 7→ g(m; h)
def
= 2Φ(Jm−h)−1. If m < (h−δ)/J ,

then g(m; h) = −1; If (h − δ)/J ≤ m ≤ (h + δ)/J , then g(m; h) = (J/δ)m − (h/δ); If
m > (h + δ)/J , then g(m; h) = 1.

case when producers are informed about each other’s costs and the strength of social
interactions among consumers. We outline our arguments in terms of a dynamic game of
price competition (the price-game).

We will also propose a game generalization in which product locations will belong to
the strategy space of producers (the location-price-game). Based on this game generaliza-
tion we will also explain that producers will locate their products close to each other when
the strength of social interactions among consumers is greater than a critical value. To the
contrary, producers will locate their products far away from each other, when the strength
of social interactions among consumers is smaller than this critical value. Interestingly,
for weak social interactions among consumers, one restores Hotelling’s (1929) standard
result that predicts maximal distance between competitors. We stress that exactly the
opposite result can be expected when producers are supposed to deal with consumers that
are strongly susceptible to one another’s choices.

The price-game we will present should capture the essential mechanisms of price com-
petition in the presence of social interactions of consumers. In order to get a simple model,
we assume that players set prices over time aiming to achieve a sequence of demand equi-
libria over time. This point of view assumes that equilibria of demands are approached
very quickly and that players have no control of demand dynamics out of their equilib-
ria. More precisely, given an equilibrium of difference of demand fractions at time t− 1,
say m̄t−1, players’ prices pt(−) and pt(+) produce a new equilibrium m̄t at time t given
by m̄t = G(m̄t−1, ht) = limτ→∞ mτ , where m0 = m̄t−1 and mτ = 2Φ(Jmτ−1 − ht) − 1
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for τ > 0. When it happens that m̄t−1 is an equilibrium which is a repulsor, that is,
when m̄t−1 is a repulsor in respect to mapping m → 2Φ(Jm − ht) − 1, then we will
set m̄t = G(m̄t−1, ht + ζt), where ζt is a random perturbation symmetrically distributed
around zero. We formalize this game below.

The price-game. The game has two players and is played at times t = 1, 2, 3, . . . At
each time t = 1, 2, . . ., players E(−) and E(+) choose simultaneously two respective prices
satisfying pt(−) ≥ c and pt(+) ≥ c.18 These prices are chosen based on the equilibrium
of difference of demand fractions m̄t−1, that is,

pt(x) = P
(x)
t (m̄t−1), x ∈ {−, +} (18)

where m̄0 is a game parameter.
Given the price choices at time t, pt(−) and pt(+), the resulting equilibrium of differ-

ence of demand fractions m̄t at time t is defined as follows:

m̄t = G(m̄t−1, ht + εt), ht = pt(+)− pt(−)− θ (19)

where G(m̄t−1, ht + εt) = limτ→∞ mτ with mτ = 2Φ(Jmτ−1 − ht + εt)− 1 for τ > 0 and
m0 = m̄t−1. The random perturbation εt in (19) is defined as follows:

εt = εt(m̄t−1, ht) =

{
ζt if m̄t−1 is a repulsor at time t
0 otherwise

(20)

In (20) we use the term “repulsor at time t” in the following sense: m̄t−1 is a repulsor at
time t if it solves the equation m = 2Φ(Jm− ht)− 1 and if it is a repulsor in respect to
mapping m → 2Φ(Jm−ht)−1. Above, ζ1, ζ2, ζ3, . . . are independent normally distritbuted
random variables with mean zero and positive variance (independent random perturbation
symmetrically distributed around zero, where the value of ζt is not known at time t).

The pay-offs of players are

∞∑
t=1

λt−1 E
[
N̄ (x)(m̄t) ·

[
P

(x)
t (m̄t−1)− c

]]
, x ∈ {−, +} (21)

where:

• P
(x)
t (m̄t−1) and c, denote respectively the unit price and cost of E(x)

• N̄ (x)(m̄t) is the resulting market share of E(x) at the equilibrium m̄t, that is,

N̄ (x)(m̄t) = (1 + x · m̄t)/2, x ∈ {−, +}

• E(·) is the mathematical expectation operator (due to the randomness of ζt’s)

18Prices are bonded below by the products’ marginal costs - dumping prices are not allowed. This
restriction is imposed to facilitate exposition. Analogous results can be derived assuming pt(−) ≥ 0 and
pt(+) ≥ 0.
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• λ is a discount factor, 0 < λ < 1

The next proposition, Proposition 3, shows that in duopolies of interacting consumers
demand polarization will occur and will be locked at one player’s side whenever products
are sufficiently close to each other, that is, whenever products are sufficiently similar
to each other. To the contrary, when products are sufficiently distant from each other,
Proposition 3 predicts that the market will be shared symmetrically among producers.
More precisely, we will derive a subgame perfect Nash equilibrium (SPNE)19 of the price-
game that confirms this assertion. Proposition 3 assumes that θ and Φ are as derived
in Proposition 2, that is: θ = 0 and Φ is the cumulative probability distribution of the
uniform distribution on the interval [−δ, δ], δ ≥ 0. Recall that “θ = 0” and the above
parametric form of Φ were explicitly derived from the assumption that consumers and
products are located along a circle of circumference 1, where δ = νd(1−d) with d denoting
the shortest distance between products along the circle (Proposition 2).

We will also assume that m̄0 = 0. This is a natural assumption when products
are supplied for the first time, and consumers have no information about the products’
popularity - no bias in social influence. We will use this assumption when we introduce
decisions about product locations in the strategy space of players.

Proposition 3. Consider the price-game defined above with pay-off functions (21). As-
sume that Φ is the cumulative distribution of the uniform distribution on the inter-
val [−δ, δ]. Assume also that θ = 0 = m̄0. Then for fixed J ≥ 0 and fixed δ ≥ 0
(δ = νd(1− d), d = d(l(−), l(+))), the following profile of price strategies (depending on δ)
is a subgame perfect Nash Equilibrium of the price-game:

(P (−), P (+)) = (P (−,δ), P (+,δ))

where for x ∈ {−, +} and t ≥ 1:

P
(x,δ)
t =





{
J − δ + c if t > 1 and m̄t−1 = x · 1
c otherwise

if δ ≤ J

δ − J + c if δ > J

(22)

Furthermore the interaction of the above strategies leads to

Prob(m̄t = x, ∀ t ≥ 1) =

{
1/2 if |x| = 1 and δ < J

1 if x = 0 and δ ≥ J
(23)

19Roughly speaking, a strategy profile (P (−), P (+)) is a subgame perfect Nash equilibrium if it induces
a Nash equilibrium in every subgame played from time t onward (t ≥ 1). For detailed descriptions of
dynamic games and subgame perfect Nash equilibria the reader is referred to Fudenberg and Tirole (1991)
and Vega-Redondo (2003).
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It follows from (21), (22) and (23) that players’ pay-offs in this Nash equilibrium are:
π(−) = π(+) = π(δ), where

π(δ) =





1

2

[ λ

1− λ
(J − δ)

]
if δ ≤ J

1

2

[ 1

1− λ
(δ − J)

]
if δ > J

(24)

The proof of Proposition 3 is presented in the Appendix.

We stress that Nash equilibrium (22) depends on the (fixed) game parameters δ and
J . In what follows we will discuss Proposition 3 in the following cases: δ < J , δ = J and
δ > J . We will also generalize the price-game in the sense that δ will be determined by
the players’ product locations (δ = νd(1− d), d = d(l(−), l(+))). We will also derive some
results related to this game generalization and discus it. For this we will adopt the same
notation for prices and price strategies. To be more precise in respect to notations, we
make the following remark.

About Notation. Formally, a strategy of player E(x) is a sequence of functions P (x) =
{P (x)

t (·)}∞t=1, where P
(x)
1 (·) is a constant function (x ∈ {−, +}). By setting p1(x) = P

(x)
1 (·),

x ∈ {−, +}, and applying (18) and (19), the strategy profile (P (+), P (−)) generates a
unique two-dimensional price process (p(+), p(−)) = {pt(+), pt(−)}∞t=1. For convenience
in further expositions, we will refer componentwise to the strategy profile (P (+), P (−)) as
well to the generated price processes (p(+), p(+)) with the same notation (P (+), P (−)).

We discuss now Nash equilibrium (22) when δ < J . Since δ < J , low heterogeneity
regime is assured and polarization will occur. Accordingly, players will set their prices as
low as possible (dumping prices not allowed) in order to try to polarize demand at time
t = 1. After demand is polarized, the winner will raise his price up to the discontinuity
price J − δ + c - assuming that the loser sets his price equal to c (lower bound for prices
in this game). Note that the loser cannot improve his pay-off by setting a higher price at
any subsequent decision time. Moreover, if the loser would set c + ε (ε > 0) at a certain
decision time t > 1, the best response of the winner at time t + 1 would be a price that
is higher than J − δ + c. But if the winner plays a price that is higher than J − δ + c,
the loser can set a relatively low price and become the winner from time t + 2 onward.
The fact the loser plays a price equal to c reflects his behavior of permanently trying to
become the winner - as soon as the current winner makes a mistake and exceeds his price
over discontinuity price J − δ + c, the loser will polarize demand and become the winner.
Accordingly, the only subgame perfect Nash equilibrium (SPNE) where demand remains
permanently polarized at one specific player’s side is (22). It is also easy to see that (22)
is the unique SPNE if J is sufficiently large, and prices are bonded above. Assertion (23)
just says that demand will be polarized from time t = 1 onward at each player’s side with
probability 1/2.
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The case δ = J can be viewed as a limit case of δ < J when δ ↑ J . Although demand
polarization does not occurs, the players’ discontinuity price are c, provided that their
competitors’ price are also c.

Let us now analyze Nash equilibrium (22) when δ > J (high heterogeneity regime).
In this case, the price-game becomes a repeated game of price competition. This occurs
because the equilibrium of difference of demand fractions m̄t depends only on prices P

(−)
t

and P
(+)
t played at time t (not on m̄t−1). That is, m̄t equals the unique solution m̄ of

m̄ = 2Φ
(
Jm̄ + P

(−)
t − P

(+)
t

)− 1 (25)

Consequently players’ pay-offs at time t, π
(x)
t , x ∈ {−, +}, depend only on prices charged

at that time. According to (21) and (25), the players’ pay-offs at time t are:

π
(x)
t = N (x)(m̄)

[
P

(x)
t − c

]
, x ∈ {−, +} (26)

where m̄ is the unique solution of (25).
Equation (26) implies that the price-game restricted to time t + 1 is exactly the same

as the price-game restricted to time t, t ≥ 1. Therefore, when δ > J , a SPNE of the
price-game is given by repetitions of the Nash equilibrium restricted to time t = 1. In
the proof of Proposition 3 (see Appendix) we compute the indicated Nash equilibrium.
It corresponds to the strategy profile (22) when δ > J . In the proof of Proposition 3 we
conclude also that the market will be shared symmetrically between E(−) and E(+) over
time whenever δ > J . This is asserted in (23) for δ > J ({m̄t = 0,∀t ≥ 1} occurs with
probability 1).

Let us now analyse pay-off π(δ) presented in (24). Note that δ → π(δ) is decreasing
for δ ≤ J and increasing for δ > J . Since δ is determined by products proximity d
(δ = νd(1−d), d = d(l(−), l(+))), it would be interesting to investigate the game outcomes
in respect to locations, prices and resulting market shares when product locations l(−)

and l(+) are chosen by the players.
In what follows we will define a second game in which players first locate their pro-

ducts and then play the price-game proposed before. In this game, product locations will
determine the probability distribution Φ. As in the price-game defined before, we assume
that Φ is the cumulative distribution function of the uniform distribution over [−δ, δ],
δ = νd(1 − d), d = d(l(−), l(+)), which results when products and consumers are located
along a circle of circumference 1, and transportation costs are quadratic in the distances
(geodesics) between consumers and products.

Location-price game. The game has two players E(−) and E(+), and is played at times
t = 0, 1, 2, . . . At time t = 0, players choose respective locations, l(−) and l(+), along a
circle of circumference 1. From time t = 1 onward, players play the price-game defined
before knowing that Φ is the cumulative distribution function of the uniform distribution
over [−δ, δ], where δ = νd(1− d), d = d(l(−), l(+)) (d is the shortest distance between l(−)

and l(+) along the circle). The players’ pay-offs are the same as in (21).

Let us consider the following strategy profile

[(l(−), P (−, δ)) ; (l(+), P (+, δ))], δ = νd(1− d), d = d(l(−), l(+)) (27)
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where P (x, δ), x ∈ {−, +} is the SPNE of the price-game defined in (22).
By applying backward induction to (27) we can compute the following Nash equilib-

rium of the location-price game:

[(l(−)
∗ , P (−, δ∗)

∗ ) ; (l(+)
∗ , P (+, δ∗)

∗ )] (28)

where δ∗ = argmaxδ π(δ) (with π(δ) defined in (24)), and l
(x)
∗ , x ∈ {−, +}, satisfying

d(l
(−)
∗ , l

(+)
∗ ) = d∗ for νd∗(1− d∗) = δ∗.

Let us compute Nash equilibrium (28). For this, observe first that δ ranges between
0 and ν/4. This is because δ = νd(1− d), and d (the shortest distance between l(−) and
l(+) along the circle of circumference 1) ranges between 0 and 1/2.

According to (24) π(δ) is strictly decreasing for δ ≤ J , and strictly increasing for
δ > J . Since δ ranges between 0 and ν/4, we have δ∗ = 0 or δ∗ = ν/4. Of particular
interest to us is the critical value J∗ that makes π(0) = π(ν/4) for J = J∗. Taking (24)
into account, J∗ must satisfy

1

2

[ λ

1− λ
(J∗ − δ)

]∣∣∣∣∣
δ=0

=
1

2

[ 1

1− λ
(δ − J∗)

]∣∣∣∣∣
δ=ν/4

⇒ J∗ =
ν/4

λ + 1

Moreover it holds that

π(0)− π(ν/4) > 0 for J > J∗ and π(0)− π(ν/4) < 0 for J < J∗

Since d → δ (δ = νd(1 − d)) is strictly increasing for d ∈ [0, 1/2], it follows from
the above that d∗ = 0 (distance between products is minimal) if and only if J > J∗ and
d∗ = 1/2 (distance between products is maximal) if and only if J < J∗.

Let us summarize the above results in the following proposition:

Proposition 4. Consider the following strategy profile of the location-price game.

S = [(l(+), P (+, δ)) ; (l(−), P (−, δ))], δ = νd(1− d), d = d(l(−), l(+))

where P (x, δ), x{−, +}, is defined in (22). Set

J∗ =
ν/4

1 + λ

1. Suppose J < J∗. In this case, S is a subgame perfect Nash equilibrium (SPNE) if
and only if d(l(−), l(+)) = 1/2 (distance between l(−) and l(+) is maximal). In this
Nash equilibrium the resulting prices and difference of demand fractions satisfy:

P
(+)
t = P

(−)
t = ν/4− J + c, m̄t = 0, t = 1, 2, . . . (29)

The players’ pay-off are

π(x) =
1

2

[ 1

1− λ
(ν/4− J)

]
, x ∈ {−, +} (30)
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2. Suppose J > J∗. In this case, S is a SPNE if and only if d(l(−), l(+)) = 0 (distance
between l(−) and l(+) is minimal). In this Nash equilibrium the resulting prices and
difference of demand fractions satisfy:

P
(+)
1 = P

(+)
1 = c,

P
(x)
t = J + c, P

(−x)
t = c, m̄

(x)
1 = x1, m̄t = x1, t = 2, 3, . . .

(31)

where the second line of (31) occurs with probability 1/2 for each fixed x ∈ {−, +}.
The players’ pay-off are

π(x) =
1

2

[ λJ

1− λ

]
, x ∈ {−, +} (32)

3. Suppose J = J∗. In this case, S is a SPNE if and only if d(l(−), l(+)) = 1/2 or
d(l(−), l(+)) = 0 (distance between l(−) and l(+) is either maximal or minimal). If
d(l(−), l(+)) = 1/2, then S satisfy (29) and (30). If d(l(−), l(+)) = 0, then S satisfy
(31) and (32).

Proposition 4 shows that producers tend to come close to each other when J is suffi-
ciently large, that is, when consumers are sufficiently susceptible to one another’s choices.
In this case, producers get more market power by producing a social product differ-
entiation which happens when competing products are similar. This may explain the
geographic concentration of bars, restaurants, night clubs under the circumstances that
some of them are poorly visited. Since consumers are strongly susceptible to one another’s
choices, producers come close to each other and try to polarize demand at a first moment.
After polarization occurs, some of them sustain a relatively high level of demand com-
pared to their prices while others remain poorly visited in spite of their modest prices.
Although frustrations are unavoidable, on average, it may be more advantageous for all
players to come close to each another in order to exploit J − δ > 0 (making δ small) than
to be distant from each other in order to exploit δ − J > 0 (making δ large). This is the
case when δ is bonded above by a constant ν/4, and J is sufficiently large (even when
J < ν/4).

By contrast, when J is small, that is, when consumers are weakly susceptible to one
another’s choices, one restores Hotelling’s (1929) standard result, according to which
producers locate their products faraway from each other. In this case, market players get
their market power from the proximity to their potential costumers. This seems to be a
natural assumption for producers (like gas stations, pharmacies, etc.) whose consumers
are not primarily susceptible to one another’s choices, but to the accessability of products.

The above examples relates to geographic locations of products and consumers. The
same arguments hold also for product differentiations in the context of a space of product
characteristics (see Anderson et al. (1992)).
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6 Closing remarks

In this paper we present a stochastic model of heterogeneous interacting consumers de-
ciding between two product variants. Our model predicts that interactions among con-
sumers will lead to market polarization whenever products become sufficiently similar to
each other. This model result extends Becker’s (1991) explanation about the demand
polarization of two similar restaurants across from each other competing for consumers.

We consider a mix of two types of consumers’ heterogeneity: fixed heterogeneity and
varying heterogeneity over time. We analyze a model parametrization, according to which,
a fraction of habitual consumers (model parameter between 0 and 1) are permanently re-
placed by new consumers “refreshing the population of consumers” over time. A general
model result shows that the resulting stochastic share of decisions converges to a specific
dynamical system, regardless of the particular fraction of exchanging consumers under
consideration. This convergence is proved in the case when the number of habitual con-
sumers goes to infinity. This limit result is applied to deduce an interesting relationship
between the fraction of exchanging agents and the process of consumers’ decisions in the
case when the number of habitual consumers is finite - instead of infinite. If this fraction is
sufficiently small (not necessarily equal to zero) then the process is non-ergodic, otherwise
it is ergodic. We discus an application of this process property and show how it can be
used to drive an undesired state of decisions into a desired one.

We propose a dynamic game of price competition of two similar product variants
in which consumers are susceptible to one another’s choices of products. In this game,
producers are aware of tree things: i) their product locations, ii) each other’s product costs
and ii) the strength of social interactions among consumers. We analyze this game and
show that, in a Nash equilibrium, demand will be polarized and locked at one player’s side
whenever products are sufficiently close to each other. The game predicts the opposite
result, that is, that market is shared symmetrically among competitors, whenever products
are sufficiently distant from each other. We also analyze a game generalization in which
product locations were considered in the strategy space of players. Interestingly, an
equilibrium analysis of this game shows that players will locate their products close to each
other whenever the strength of social interactions among consumers is larger than a critical
value. By contrast, if the strength of social interactions among consumers is smaller than
this critical value, then the game outcome restores Hotelling’s (1929) standard result that
predicts maximal distance of products.

The model results indicate that social interactions among consumers play a key role
in determining the way producers interact strategically with each other, implying in quite
different outcomes in respect to locations, prices and market shares.
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7 Appendix

Proof of Proposition 1. Our goal is to prove (33) as stated below

∀t ≥ 0 : lim
N→∞

∣∣m
(N)
t −mt

∣∣ = 0, almost surely. (33)

In order to prove (33), we first prove the following convergence:

∀t ≥ 0 : lim
N→∞

∣∣ m
(N)
t − g(m

(N)
t−1)

∣∣ = 0, almost surely, (34)

where g is defined by g(m) = 2Φ(Jm− h)− 1.

Assertion (33) will then follow from (34) by induction on t.

Proof of (34). For the whole proof of (34) we will fix an arbitrary value for t.
Let us define

I{ξ(i)≤x}
def
=

{
1, if ξ(i) ≤ x
0, otherwise

x ∈ R, i = 1, 2, . . . (35)

and (for fixed t)

ΦN(x)
def
=

1

N

∑

i∈C
(N)
t

I{ξ(i)≤x} (36)

Since for each x ∈ R and N ≥ 1, random variables I{ξ(i)≤x}, i ∈ C
(N)
t are independent

Bernoulli random variables with expected value Φ(x) (Φ(x) = P (ξ(i) ≤ x)), we conclude
(using |I{ξ(i)≤x}| ≤ 1 and Borel-Cantelli’s Lemma) that

∀x : ΦN(x) → Φ(x), almost surely as N →∞ (37)

Applying the argument, that proves Glivenko-Cantelli’s theorem,20 to (37) we deduce:

limN→∞ supx

∣∣∣ ΦN(x)− Φ(x)
∣∣∣ = 0, almost surely (38)

The uniform convergence asserted in (38) will be used below to prove (34).

We now observe that m
(N)
t = 2[Nt(+1)/N ] − 1, where we recall that Nt(+1) is the

number of consumers that choose +1 at time t. This follows from (8) and the following

relation: Nt(−1) = N − Nt(+1). Using “m
(N)
t = 2[Nt(+1)/N ] − 1”, steps 1)-3) of the

construction of process (m
(N)
t )t≥0, described in Section 3, and the notations introduced in

(35) and (36), we can write

m
(N)
t = 2ΦN

(
Jm

(N)
t−1 − h

)− 1 (39)

20Durrett (1995), p. 59-60.
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Now, (39) and the definition of mapping m 7→ g(m) = 2Φ(Jm− h)− 1 imply that

∣∣m
(N)
t − g(m

(N)
t−1)

∣∣ = 2
∣∣ΦN

(
Jm

(N)
t−1 − h

)− Φ
(
Jm

(N)
t−1 − h

) ∣∣
≤ 2supx

∣∣∣ ΦN(x)− Φ(x)
∣∣∣ (40)

The inequality in (40) and the convergence in (38) imply an almost certain convergence
(34).

We are now in position to prove (33) by induction on t.

Proof of (33).

The induction basis (t = 0). For t = 0, the result is immediate, since “m
(N)
0 = m0,

∀N ≥ 1” is an assumption of the proposition.

The induction step (t− 1 y t). Suppose now that (33) holds for an arbitrary t− 1 ≥ 0,

that is, m
(N)
t−1 converges almost surely to the constant value mt−1 (when N → ∞). Since

g is continuous, g(m
(N)
t−1) converges almost surely to g(mt−1). Since g(mt−1) = mt, we

conclude that g(m
(N)
t−1)−mt converges almost surely to zero.

Now, since according to (34), m
(N)
t − g(m

(N)
t−1) converges almost surely to zero, we can

apply the triangular inequality and deduce the result for t:

|m(N)
t −mt | ≤

≤ |m(N)
t − g(m

(N)
t−1) |+ | g(m

(N)
t−1)−mt | → 0

(N →∞) (41)

This shows (33) and completes the proof of Proposition 1. ¤

Proof of Proposition 2. We aim to find the probability distribution of θ(i) (for l(−) and
l(+) fixed). Since l(−), l(+) and l(i) are points along the circle, the only relevant information
for computing the probability distribution of θ(i) is distance d = d(l(−), l(+)) (not the exact
locations l(−) and l(+)). For computing the probability distribution of θ(i), we normalize
l(−) = −d/2 and l(+) = d/2 (d ≤ 1/2), and adopt the convention that points (addresses)
along the circle vary from −1/2 to 1/2, with −1/2 and 1/2 being assigned to the same
point. Under this convention, (16) reduces to:

θ(i) = f(l(i)) =





−2ν(1− d)l(i) − ν(1− d) if − 1/2 ≤ l(i) < −(1− d)/2

2νdl(i) if |l(i)| ≤ (1− d)/2

−2ν(1− d)l(i) + ν(1− d) if (1− d)/2 < l(i) ≤ 1/2

(42)

Now, since the random location l(i) is uniformly distributed over [−1/2, 1/2], the cumu-
lative distribution function of θ(i) can be computed by inspecting function f(l(i)) defined
in (42). In fact, by inspecting the graph of function f , it is easy to see that θ(i) is uniformly
distributed on the interval [−νd(1−d), νd(1−d)]. Since the interval [−νd(1−d), νd(1−d)]
is symmetric around zero, we can write θ(i) = θ − ξ(i) and assume (17). ¤
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Proof of Proposition 3. We divide the proof into tree cases: δ < J , δ = J and δ > J .

Case δ < J (low heterogeneity regime).

Let us first prove (23). Due to (22) we have P
(−)
1 = P

(+)
1 = c. Hence, h1 = 0. Since

J > δ (low heterogeneity regime), m̄0 (m̄0 = 0) is a repulsor at time 1. Due to the
randomness of ζ1, we have: m̄1 = 1 with probability 1/2 and m̄1 = −1 with probability
1/2. Given that m1 = 1, we will argue that m̄t = 1, ∀t > 1 (analogously, we can conclude
that m̄t = −1,∀t > 1, given that m1 = −1).21

Suppose m̄1 = 1. Due to (22), players would play P
(−)
2 = c and P

(+)
2 = J − δ + c at

time t = 2. Since m̄1 = 1 and h2 = P
(+)
2 −P

(−)
2 = J − δ, equilibrium m̄1 is not repulsor at

time t = 2. Accordingly, m̄2 = G(m̄1, h2) = G(1, J − δ) = 1. Since m̄2 = 1, (due to (22))

players would play again P
(−)
3 = c and P

(+)
3 = J − δ + c at time t = 3. By induction on

t, we conclude: m̄t = 1, ∀t ≥ 1.

Assertion (24) follows immediately from (21), (22) and (23) in case δ < J .

Let us now verify that (22) is a subgame perfect Nash equilibrium (SPNE) of the
price-game when δ < J . Suppose it is not. We will derive a contradiction. If (22) is not
a SPNE, there would be a time t∗ where a player, say E(+), would get a higher pay-off
from time t∗ onward if he deviates from (22) from time t∗ on. Suppose initially this time

is t∗ = 1. If E(+) sets P
(+)
1 > c (and P

(−)
1 = c), we will get h1 > 0. Since h1 > 0 and

m̄0 = 0, it follows that m̄0 is not a repulsor at time 1. Thus m1 = G(m̄0, h1) = −1. Now,

for any price choice P
(+)
2 with P

(+)
2 ≥ c, it holds h2 = P

(+)
2 −P

(−)
2 ≥ 0 and m̄1 (m̄1 = −1)

is not a repulsor at time 2. Accordingly, m̄2 = G(m̄1, h2) = G(−1, h2) = −1. Repeating
this argument we conclude (by induction on t) that m̄t = −1, ∀t ≥ 1. The latter assertion
implies zero pay-off for E(+) and shows that E(+) can not optimally deviate from (22) at
time t∗ = 1.

Suppose there is a time t∗ > 1 in which player E(+) could optimally deviate from (22)
improving his pay-off from time t∗ onward. If m̄1 = −1, there is nothing that E(+) could
do to avoid a zero profit, that is, demand would be polarized and locked at player’s E(−)

side, and the pay-off of E(+) would be zero, regardless of the price choices of E(+) at times
t∗ + 1, t∗ + 2, t∗ + 3, . . .

Let us assume m̄1 = 1. If there is such a time t∗ > 1, there will be a deviating strategy
P̃ (+) that will result in a larger pay-off for E(+) from time t∗ onward than strategy P (+)

does. If the deviating strategy is always bonded above by strategy P (+), that is, if
P̃

(+)
τ ≤ P

(+)
τ for τ = t∗, t∗ + 1, . . ., then it should be clear that the resulting pay-off under

P̃
(+)
τ is lower than the one under P (+). Let us assume that the deviating strategy satisfies

P̃
(+)
τ∗ > P

(+)
τ∗ at a first time τ∗ with 1 < t∗ ≤ τ∗ < ∞ and P̃

(+)
τ ≤ P

(+)
τ for all τ = 1, 2 . . . τ∗.

Then, given m̄1 = 1, the resulting pay-off under P̃ (+) from time t∗ onward (denoted below

21From assertions i) “m̄t = 1,∀t > 1, given m̄1 = 1” and ii) “m̄t = −1,∀t > 1, given m̄1 = −1”, it
follows that {m̄t = 1,∀t ≥ 1} and {m̄t = −1,∀t ≥ 1} occur with probability 1/2. This proves (23) when
δ < J .
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by π̃(+)(t ≥ t∗|m̄1 = 1)) can be estimated as follows:

π̃(+)(t ≥ t∗|m̄1 = 1) ≤ ∑τ∗−1
τ=t∗ λτ−t∗(J − δ) +

∑∞
τ=t∗ 0

<
∑∞

τ=t∗ λτ−t∗(J − δ) = π(+)(t ≥ t∗|m̄1 = 1)
(43)

where π(+)(t ≥ t∗|m̄1 = 1) denotes the pay-off of E(+) under P̃ (+) from time t∗ onward,
given m1 = 1. Condition (43) contradicts the fact that E(+) could optimally deviate from
(22) at some time t∗ > 1, given m1 = 1.

Case δ = J .

Let us first prove (23). Due to (22) we have P
(−)
1 = P

(+)
1 = c and h1 = 0. Since δ = J ,

equilibrium m̄0 (m̄0 = 0) is not a repulsor at time t = 1. Accordingly, m̄1 = G(m̄0, h1) =

G(0, 0) = 0. Due to (22) we have again P
(−)
2 = P

(+)
2 = c and h2 = 0. By induction on

t, it follows that m̄t = 0, ∀t ≥ 1. This proves (23) when δ = J . Assertion (24) follows
immediately from (21), (22) and (23) in case δ = J (in this case the players’ pay-off are
zero). The proof that (22) is a SPNE (when δ = J) is omitted. It is analogous to the
corresponding proof in case δ < J .

Case δ > J (high heterogeneity regime).

Let us first prove (23). Due to (22) we have P
(−)
t = P

(+)
t = δ − J + c and ht = 0,

∀t ≥ 1. Since δ > J , equilibrium m̄0 (m̄0 = 0) is not a repulsor at time t = 1. Accordingly,
m̄1 = G(m̄0, h1) = G(0, 0) = 0. By induction on t, it follows that m̄t = 0, ∀t ≥ 1. This
proves (23) when δ ≥ J .

Assertion (24) follows immediately from (21), (22) and (23) in case δ > J .

Let us now verify that (22) is a subgame perfect Nash equilibrium (SPNE) of the
price-game when δ > J . In this case (δ > J), the price-game becomes a repeated game of
price competition. This occurs because the equilibrium of difference of demand fractions
m̄t depends only on prices P

(−)
t and P

(+)
t played at time t (not on m̄t−1). That is, m̄t

equals the unique solution m̄ of m̄ = 2Φ
(
Jm̄ + P

(−)
t − P

(+)
t

)− 1. This means that the
price-game restricted to time t + 1 is exactly the same as the price-game restricted to
time t, t ≥ 1. Accordingly, a SPNE of the price-game is given by repetitions of the Nash
equilibrium of the price-game restricted to time t = 1.

In what follows we show that P
(−)
1 = P

(+)
1 = δ − J + c is a Nash equilibrium of the

price-game restricted to t = 1. For this purpose we first compute the equilibrium m̄1

when prices P
(−)
1 and P

(+)
1 are fixed (in the computation below, we suppress the time

index from the variables involved).
Given fixed prices P (−) and P (+), the only (glabal stable) equilibrium of difference of

demand fractions m̄ must satisfy:

m̄ = 2Φ
(
Jm̄ + P (−) − P (+)

)− 1
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Since Φ is the cumulative distribution function of the uniform distribution over [−δ, δ],
we conclude:

m̄ =





1 if P (−)−P (+)

δ−J
> 1

P (−)−P (+)

δ−J
if |P (−)−P (+)

δ−J
| ≤ 1

−1 if P (−)−P (+)

δ−J
< −1

(44)

Now, according to (21), the pay-off of E(x) at time t = 1 is

π
(x)
1 = [(1 + xm̄)/2](P (x) − c), x ∈ {−, +} (45)

From (44) and (45) we conclude:

π
(x)
1 = Iu

( P (−x) − P (x) + 1

2(δ − J)

)
(P (x) − c), x ∈ {−, +} (46)

where Iu denotes the following function defined on [0, 1]: Iu(y) = 0 for y < 0, Iu(y) = y
for y ∈ [0, 1], and Iu(y) = 1 for y > 1.

Due to the symmetry of (46), it is easy to compute the Nash equilibrium in (46). It
is given by:

P (+) = P (−) = δ − J + c ¤
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