Energy and electronic structure of gallium and nitrogen interstitials in GaN Tilt Boundaries

Bere Antoine 1,2Belabbas Imad 1Gerard Nouet 1Pierre Ruterana 1Jean Koulidiati 2Chen Jun 3

1. SIFCOM, UMR6176, CNRS-ENSICAEN, 6 Bld Maréchal Juin, Caen 14050, France
2. Laboratoire de Physique et de Chimie de l'Environnement, Universite de Ouagadougou, Ouagadougou, Burkina Faso
3. Laboratoire Universitaire de Recherche d’Alençon, IUT d’Alençon (L), Damigny 61250, France


Defects containing point defects, impurities, and intentionally doping in GaN, are the subject of numerous experimental and theoretical investigations. It is well known that their presence can reduce the performance of optoelectronic devices due to a multiplicity of parasitic luminescence which they are responsible.
While it is now well known that yellow luminescence (YL) around 2.2 – 2.3 eV observed in undoped GaN layers results from a transition between band states and deep levels, the origin of the defects that are associated with this YL is still under debate.
Cathodoluminescence studies have recently shown that the YL is not uniform in the crystal and therefore can be associated with the presence of extended defects like dislocations and grain boundaries. Then, several atomistic models of extended defects may be considered in order to explore the ones that give rise to the parasitic YL.
In this work, molecular static atomistic simulations using a Self-Consistent-Charge Dentity-Functional-Tight-Binding (SCC-DFTB) approach will be applied to study the core structure of tilt boundaries in interaction with gallium and nitrogen interstitials. The geometry of the nearest neighbours, the formation energies and the electronic states associated to these defects will be discussed in comparison with those in GaN bulk and dislocations.

Legal notice
  • Legal notice:

    Copyright (c) Pielaszek Research, all rights reserved.
    The above materials, including auxiliary resources, are subject to Publisher's copyright and the Author(s) intellectual rights. Without limiting Author(s) rights under respective Copyright Transfer Agreement, no part of the above documents may be reproduced without the express written permission of Pielaszek Research, the Publisher. Express permission from the Author(s) is required to use the above materials for academic purposes, such as lectures or scientific presentations.
    In every case, proper references including Author(s) name(s) and URL of this webpage: must be provided.


Related papers
  1. Investigation of InN layers grown by molecular beam epitaxy on Si or GaN templates
  2. Structural properties of InAlN thin layers for HEMT applications
  3. Low frequency noise measurements in InN films
  4. The microstructure and properties of InN layers
  5. Role of threading dislocations on Indium distribution in InGaN alloys
  6. Optical properties of InN grown on Si(111) substrate
  7. Microstructure of InN grown on Si (111) by plasma-assisted MBE using a double buffer layer
  8. Ferromagnetism in transition-metal doped ZnS
  9. Electronic and magnetic properties of Co-doped ZnO: first principles study
  10. Method of Manganese co-doping of LT ZnO films
  11. Formation of precipitates in Mn doped ZnO layers deposited by magnetron sputtering
  12. The structure of nucleation Zn(Al)O layers for transparent metal oxide application
  13. First-principles calculations of the optical band-gap properties of Mg1-xZnxO alloys
  14. Theoretical studies of ZnS1-xOx alloy band structures
  15. FE and MD simulation of InGaN QD formation induced by stress field of threading dislocations
  16. Strain Relaxation Effect on the Properties of Ultra Thin ZnO Film on Sapphire (0001) Substrates by Pulsed Laser Deposition
  17. Low and high indium fluctuation in MOCVD grown InGaN/GaN as determined by quantitative HRTEM
  18. Structural properties of quaternary InAlGaN MQWs grown by plasma-assisted MBE
  19. Finite element modelling of nonlinear elastic and piezoelectric properties of InN and InGaN QDs
  20. Structural analysis of the behaviour of the ultrathin AlN capping layer interface during the RE implantation and annealing of GaN for electroluminescence applications
  21. Investigation of InN layers grown by MOCVD and MBE using analytical and high resolution TEM
  22. Interfacial diffusion and precipitation in rf magnetron sputtered Mn doped ZnO layers
  23. The atomic configuration of tilt grain boundaries around <0001> in GaN
  24. Ab-initio tight-binding study of the core structures of the c edge dislocation in wurtzite GaN
  25. First principles study of electronic structure of InN and AlN substitution atomic layers embedded in GaN
  26. Full-potential study of d-electrons effects on the electronic structure of wurtzite and zinc-blende InN
  27. Image processing of HREM micrograph for determination size distribution of Co nanocrystals in Cu matrix
  28. Quantitative study of Cd atoms distribution in CdTe/ZnTe quantum dots superlattice by HRTEM
  29. The atomic structure of defects formed during doping of GaN with rare earth ions
  30. Transmission electron microscopy structural investigations of Tm implanted GaN
  31. Study of photo- and electro-luminescence related with Er3+ ions in GaN:Er
  32. Quantitative transmission electron microscopy investigation of localised stress in heterostructures
  33. Modelling of indium rich clusters in MOCVD InGaN/GaN multilayers

Presentation: poster at E-MRS Fall Meeting 2005, Symposium F, by Bere Antoine
See On-line Journal of E-MRS Fall Meeting 2005

Submitted: 2005-05-20 09:23
Revised:   2009-06-07 00:44
© 1998-2022 pielaszek research, all rights reserved Powered by the Conference Engine