Visualizing income determinants of Polish households

Krzysztof Karpio 1Piotr Łukasiewicz 2Arkadiusz J. Orłowski 1

1. Szkoła Główna Gospodarstwa Wiejskiego (SGGW), Nowoursynowska 166, Warszawa 02-787, Poland
2. Warsaw University of Life Sciences Faculty of Applied Informatics and Mathematics (SGGW), Nowoursynowska 159, Warszawa 02-776, Poland


The original Grade Correspondence Analysis method (GCA) is utilized to classify Polish households basing on their incomes. One of the main advantages of the GCA is emphasis on the nontrivial visual interpretation of results. The set of households attributes is used to build so called concentration curves and overrepresentation maps. That allows us to easy recognize the importance of the attributes and their relation to incomes values. The results are compared to our previous analysis, based on decision trees.


Related papers
  1. Models of families’ incomes based on the convolutions of personal incomes distributions
  2. Measuring and explaining income inequalities in Poland: an estimation of Lorenz curves using hazard function approach
  3. Methods of machine learning and pattern recognition with applications to econophysics
  4. Numerical analysis of a mathematical model of a tumor growth and possible economic analogies
  5. The quantile decomposition of income distributions of males and females in the USA
  6. Numerical analysis of modified Kaldor-Kalecki models with couplings and delays
  7. Applications of artificial intelligence methods to econophysics problems
  8. Mining correlations on the GPW.
  9. Personal incomes vs households incomes in Poland
  10. Models of rating dynamics
  11. Time-dependent statistical analysis of the Polish stock market index WIG20
  12. Prices and Volumes on the Stock Market
  13. Methods for community detection in social networks
  14. Dynamics of some Polish internet-based networks
  15. Stock Indices for emerging markets.
  16. Patterns of food consumption in European countries
  17. Some applications of rank clocks method
  18. New results on gain-loss asymmetry for stock markets time series
  19. Selekcja i klasyfikacja spółek notowanych na Warszawskiej Giełdzie Papierów Wartościowych przy pomocy pakietu SAS
  20. Klasyfikacja rozkładów dochodów gospodarstw domowych
  21. Classification of Polish provinces according to their competitiveness using the cluster and neuron network methods.
  22. Gain-loss asymmetry for emerging stock markets.
  23. Analysis of fluctuations in financial time series

Presentation: Poster at 8 Ogólnopolskie Sympozjum "Fizyka w Ekonomii i Naukach Społecznych", by Krzysztof Karpio
See On-line Journal of 8 Ogólnopolskie Sympozjum "Fizyka w Ekonomii i Naukach Społecznych"

Submitted: 2015-09-15 18:58
Revised:   2015-09-15 21:40