Investigation of the formation of magnesium titanate phases from xerogels using hot stage X-ray powder diffractometry

Jacob Zabicky 1Giora Kimmel 1Elena Goncharov 1Francesc Guirado 2

1. Ben-Gurion University of the Negev, P.O.Box 653, Beer-Sheva 84105, Israel
2. Universitat Rovira i Virgili (URV), Av. Països Catalans, 26, Tarragona 43007, Spain

Abstract

Coprecipitated xerogel precursors of nanocrystalline magnesium titanates, with Mg:Ti stoichiometric ratio varying from 1:1 to 2:1, were subjected to thermal treatment at constant temperature in the range from 550 to 1200 °C, in air, using a hot-stage X-ray powder diffractometer. The kinetics during the first hour of the process showed dependence on the temperature and the Mg:Ti stoichiometric ratio of the precursor. At low temperatures, for compositions near 2:1, a single nonstoichiometric metastable nanocrystalline qandilite-like phase is formed; however, when the Mg content is lowered a solubility limit is reached, after which a nonstoichiometric qandilite, of fixed composition depending on the temperature, is in equilibrium with stoichiometric geikielite. The limit moves to higher Mg contents as the temperature rises. In the approximate 900-1000 °C range the metastable qandilite phases decompose into geikielite and periclase. At 1100 °C and above stoichiometric qandilite is obtained in equilibrium with geikielite. At low temperatures nanocrystalline qandilite is formed much faster than nanocrystalline geikielite, probably owing to the isotropic chemical structure of both the amorphous xerogels and qandilite. A phase diagram is proposed for the metastable nanocrystalline phases formed at low temperatures in the composition range of the present study.

Legal notice
  • Legal notice:

    Copyright (c) Pielaszek Research, all rights reserved.
    The above materials, including auxiliary resources, are subject to Publisher's copyright and the Author(s) intellectual rights. Without limiting Author(s) rights under respective Copyright Transfer Agreement, no part of the above documents may be reproduced without the express written permission of Pielaszek Research, the Publisher. Express permission from the Author(s) is required to use the above materials for academic purposes, such as lectures or scientific presentations.
    In every case, proper references including Author(s) name(s) and URL of this webpage: http://science24.com/paper/15246 must be provided.

 

Related papers
  1. Kinetics and thermodynamics in nano metal oxides formed by sol–gel technique
  2. Transition phases in nanocrystalline M2O3 oxides
  3. Application of neutron powder diffraction for the study of non-stoichiometric Ni2MnGa based alloys
  4. Advantages and disadvantages of fast XRPD measurement by using image-plate and rotating anode source
  5. Stability, instability, metastability and grain size in nanocrystalline ceramic oxide systems
  6. Stability, instability, metastability and grain size in nanocrystalline ceramic oxide systems
  7. Stable and metastable nanocrystalline oxides prepared by the sol-gel technique
  8. Formation and characterization of nanocrystalline binary oxides of yttrium and rare earths metals
  9. Characterization of intermediate phases of Y-RE oxides by using image plate Guinier camera
  10. Fast high resolution characterization of powders by utilizing image plate Guinier camera

Presentation: Poster at 11th European Powder Diffraction Conference, Poster session, by Giora Kimmel
See On-line Journal of 11th European Powder Diffraction Conference

Submitted: 2008-04-21 22:19
Revised:   2009-06-07 00:48
Google
 
Web science24.com
© 1998-2022 pielaszek research, all rights reserved Powered by the Conference Engine