Wide band-gap light emitters with improved hole injection

V A. Kochelap 

Institute of Semiconductor Physics (ISP), Nauki pr., Kyiv 03028, Ukraine

Abstract

The difficulties in achieving high hole concentrations in group-III nitrides originate from high values of activation energy of acceptors. The average hole concentration can be increased in a p-doped nitride superlattice (SL). However, most of the holes ionized from the acceptors are localized inside the quantum wells (QWs) and cannot participate in vertical transport utilized in traditional light-emitting devices (LEDs). In this report we propose two novel solutions of the problem of hole injection enhancement in wide band-gap LEDs.
Low-intensity emitters: The conventional LEDs can be modified by introducing a two-terminal hole injector that consists of a p-doped SL-base with two contacts. A bias voltage applied between these contacts provides lateral hole acceleration and increases the effective hole temperature. This results in significant enhancement of overbarrier hot-hole concentration. The proposed LED can be thought of as a three terminal device, where the hot-hole SL-injector is placed on the top of heterostructure with an intrinsic i-layer, and an n-doped region. In the report, we discuss parameters of the nitride-based hot-hole injectors and characteristics of the three terminal UV-LEDs.
High-intensity lateral current pumped emitters: To achieve high-density electron-hole plasma (EHP) and interband population inversion in group-III nitrides, we propose a planar p-i-n structure created in selectively-doped SLs: a region doped with acceptors is followed in lateral direction by an i-region and, finally, by an n-region. Thermal activation of the dopants supplies carriers into the QW layers. The QW layers accumulate both types of free carriers and a lateral p-i-n structure is formed.

Legal notice
  • Legal notice:

    Copyrighted materials, (c) Pielaszek Research, all rights reserved.
    The above materials, including auxiliary resources, are subject to Publisher's copyright and the Author(s) intellectual rights. Without limiting Author(s) rights under respective Copyright Transfer Agreement, no part of the above documents may be reproduced, stored in or introduced into a retrieval or caching system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise), or for any purpose, without the express written permission of Pielaszek Research, the Publisher. Express permission from the Author(s) is required to use the above materials for academic purposes, such as lectures or scientific presentations.
    In every case, proper references including Author(s) name(s) and URL of this webpage: http://science24.com/paper/1158 must be provided.

 

Presentation: invited oral at E-MRS Fall Meeting 2003, Symposium A, by V A. Kochelap
See On-line Journal of E-MRS Fall Meeting 2003

Submitted: 2003-07-10 12:48
Revised:   2009-06-08 12:55
Google
 
Web science24.com
© 1998-2021 pielaszek research, all rights reserved Powered by the Conference Engine